Spaces:
Build error
Build error
| import os | |
| from fastapi import FastAPI, HTTPException, Depends, Body | |
| from fastapi.responses import JSONResponse | |
| from pydantic import BaseModel, field_validator, ValidationError | |
| from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StoppingCriteriaList, pipeline, StoppingCriteria | |
| import boto3 | |
| import uvicorn | |
| import soundfile as sf | |
| import imageio | |
| from typing import Dict, Optional, List | |
| import torch # Import torch | |
| import logging | |
| # Configure logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
| AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
| AWS_REGION = os.getenv("AWS_REGION") | |
| S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
| HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") | |
| if not all([AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION, S3_BUCKET_NAME]): | |
| raise ValueError("Missing one or more AWS environment variables.") | |
| s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION) | |
| app = FastAPI() | |
| SPECIAL_TOKENS = { | |
| "bos_token": "<|startoftext|>", | |
| "eos_token": "<|endoftext|>", | |
| "pad_token": "[PAD]", | |
| "unk_token": "[UNK]", | |
| } | |
| class GenerateRequest(BaseModel): | |
| model_name: str | |
| input_text: str = "" | |
| task_type: str | |
| temperature: float = 1.0 | |
| max_new_tokens: int = 10 | |
| top_p: float = 1.0 | |
| top_k: int = 50 | |
| repetition_penalty: float = 1.1 | |
| num_return_sequences: int = 1 | |
| do_sample: bool = True | |
| stop_sequences: List[str] = [] | |
| no_repeat_ngram_size: int = 2 | |
| continuation_id: Optional[str] = None | |
| def model_name_cannot_be_empty(cls, v): | |
| if not v: | |
| raise ValueError("model_name cannot be empty.") | |
| return v | |
| def task_type_must_be_valid(cls, v): | |
| valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"] | |
| if v not in valid_types: | |
| raise ValueError(f"task_type must be one of: {valid_types}") | |
| return v | |
| def max_new_tokens_must_be_within_limit(cls, v): | |
| if v > 500: | |
| raise ValueError("max_new_tokens cannot be greater than 500.") | |
| return v | |
| class S3ModelLoader: | |
| def __init__(self, bucket_name, s3_client): | |
| self.bucket_name = bucket_name | |
| self.s3_client = s3_client | |
| def _get_s3_uri(self, model_name): | |
| return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}" | |
| async def load_model_and_tokenizer(self, model_name): | |
| s3_uri = self._get_s3_uri(model_name) | |
| try: | |
| config = AutoConfig.from_pretrained(s3_uri, local_files_only=False) | |
| model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=False) | |
| tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=False) | |
| tokenizer.add_special_tokens(SPECIAL_TOKENS) | |
| model.resize_token_embeddings(len(tokenizer)) | |
| if tokenizer.pad_token_id is None: | |
| tokenizer.pad_token_id = tokenizer.eos_token_id | |
| return model, tokenizer | |
| except Exception as e: | |
| logging.error(f"Error loading model from S3: {e}") | |
| raise HTTPException(status_code=500, detail=f"Error loading model from S3: {e}") | |
| model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client) | |
| active_generations: Dict[str, Dict] = {} | |
| async def get_model_and_tokenizer(model_name: str): | |
| try: | |
| return await model_loader.load_model_and_tokenizer(model_name) | |
| except Exception as e: | |
| logging.error(f"Error loading model: {e}") | |
| raise HTTPException(status_code=500, detail=f"Error loading model: {e}") | |
| async def generate(request: GenerateRequest = Body(...), model_resources: tuple = Depends(get_model_and_tokenizer)): | |
| model, tokenizer = model_resources | |
| try: | |
| model_name = request.model_name | |
| input_text = request.input_text | |
| temperature = request.temperature | |
| max_new_tokens = request.max_new_tokens | |
| top_p = request.top_p | |
| top_k = request.top_k | |
| repetition_penalty = request.repetition_penalty | |
| num_return_sequences = request.num_return_sequences | |
| do_sample = request.do_sample | |
| stop_sequences = request.stop_sequences | |
| no_repeat_ngram_size = request.no_repeat_ngram_size | |
| continuation_id = request.continuation_id | |
| if continuation_id: | |
| if continuation_id not in active_generations: | |
| raise HTTPException(status_code=404, detail="Continuation ID not found.") | |
| previous_data = active_generations[continuation_id] | |
| if previous_data["model_name"] != model_name: | |
| raise HTTPException(status_code=400, detail="Model mismatch for continuation.") | |
| input_text = previous_data["output"] | |
| generation_config = GenerationConfig.from_pretrained(model_name) # Load default config and override | |
| generation_config.temperature = temperature | |
| generation_config.max_new_tokens = max_new_tokens | |
| generation_config.top_p = top_p | |
| generation_config.top_k = top_k | |
| generation_config.repetition_penalty = repetition_penalty | |
| generation_config.do_sample = do_sample | |
| generation_config.num_return_sequences = num_return_sequences | |
| generation_config.no_repeat_ngram_size = no_repeat_ngram_size | |
| generation_config.pad_token_id = tokenizer.pad_token_id | |
| generated_text = generate_text_internal(model, tokenizer, input_text, generation_config, stop_sequences) | |
| new_continuation_id = continuation_id if continuation_id else os.urandom(16).hex() | |
| active_generations[new_continuation_id] = {"model_name": model_name, "output": generated_text} | |
| return JSONResponse({"text": generated_text, "continuation_id": new_continuation_id, "model_name": model_name}) | |
| except HTTPException as http_err: | |
| raise http_err | |
| except Exception as e: | |
| logging.error(f"Internal server error: {str(e)}") | |
| raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") | |
| def generate_text_internal(model, tokenizer, input_text, generation_config, stop_sequences): | |
| max_model_length = model.config.max_position_embeddings | |
| encoded_input = tokenizer(input_text, return_tensors="pt", max_length=max_model_length, truncation=True).to(model.device) # Ensure input is on the same device as the model | |
| stopping_criteria = StoppingCriteriaList() | |
| class CustomStoppingCriteria(StoppingCriteria): # Inherit directly from StoppingCriteria | |
| def __init__(self, stop_sequences, tokenizer): | |
| super().__init__() # call parent constructor | |
| self.stop_sequences = stop_sequences | |
| self.tokenizer = tokenizer | |
| def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
| decoded_output = self.tokenizer.decode(input_ids[0], skip_special_tokens=True) | |
| for stop in self.stop_sequences: | |
| if decoded_output.endswith(stop): | |
| return True | |
| return False | |
| if stop_sequences: # Only add if stop_sequences is not empty | |
| stopping_criteria.append(CustomStoppingCriteria(stop_sequences, tokenizer)) | |
| outputs = model.generate( | |
| encoded_input.input_ids, | |
| generation_config=generation_config, | |
| stopping_criteria=stopping_criteria, | |
| pad_token_id=generation_config.pad_token_id | |
| ) | |
| generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return generated_text | |
| async def load_pipeline_from_s3(task, model_name): | |
| s3_uri = f"s3://{S3_BUCKET_NAME}/{model_name.replace('/', '-')}" | |
| try: | |
| return pipeline(task, model=s3_uri, token=HUGGINGFACE_HUB_TOKEN) # Include token if needed | |
| except Exception as e: | |
| logging.error(f"Error loading {task} model from S3: {e}") | |
| raise HTTPException(status_code=500, detail=f"Error loading {task} model from S3: {e}") | |
| async def generate_image(request: GenerateRequest = Body(...)): | |
| try: | |
| if request.task_type != "text-to-image": | |
| raise HTTPException(status_code=400, detail="Invalid task_type for this endpoint.") | |
| image_generator = await load_pipeline_from_s3("text-to-image", request.model_name) | |
| image = image_generator(request.input_text)[0] | |
| image_path = f"generated_image_{os.urandom(8).hex()}.png" # Save image locally | |
| image.save(image_path) | |
| new_continuation_id = os.urandom(16).hex() | |
| active_generations[new_continuation_id] = {"model_name": request.model_name, "output": f"Image saved to {image_path}"} # Return path or upload URL | |
| return JSONResponse({"url": image_path, "continuation_id": new_continuation_id, "model_name": request.model_name}) | |
| except HTTPException as http_err: | |
| raise http_err | |
| except Exception as e: | |
| logging.error(f"Internal server error: {str(e)}") | |
| raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") | |
| async def generate_text_to_speech(request: GenerateRequest = Body(...)): | |
| try: | |
| if request.task_type != "text-to-speech": | |
| raise HTTPException(status_code=400, detail="Invalid task_type for this endpoint.") | |
| tts_pipeline = await load_pipeline_from_s3("text-to-speech", request.model_name) | |
| audio_output = tts_pipeline(request.input_text) | |
| audio_path = f"generated_audio_{os.urandom(8).hex()}.wav" | |
| sf.write(audio_path, audio_output["sampling_rate"], audio_output["audio"]) | |
| new_continuation_id = os.urandom(16).hex() | |
| active_generations[new_continuation_id] = {"model_name": request.model_name, "output": f"Audio saved to {audio_path}"} | |
| return JSONResponse({"url": audio_path, "continuation_id": new_continuation_id, "model_name": request.model_name}) | |
| except HTTPException as http_err: | |
| raise http_err | |
| except Exception as e: | |
| logging.error(f"Internal server error: {str(e)}") | |
| raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") | |
| async def generate_video(request: GenerateRequest = Body(...)): | |
| try: | |
| if request.task_type != "text-to-video": | |
| raise HTTPException(status_code=400, detail="Invalid task_type for this endpoint.") | |
| video_pipeline = await load_pipeline_from_s3("text-to-video", request.model_name) | |
| video_frames = video_pipeline(request.input_text).frames | |
| video_path = f"generated_video_{os.urandom(8).hex()}.mp4" | |
| imageio.mimsave(video_path, video_frames, fps=30) # Adjust fps as needed | |
| new_continuation_id = os.urandom(16).hex() | |
| active_generations[new_continuation_id] = {"model_name": request.model_name, "output": f"Video saved to {video_path}"} | |
| return JSONResponse({"url": video_path, "continuation_id": new_continuation_id, "model_name": request.model_name}) | |
| except HTTPException as http_err: | |
| raise http_err | |
| except Exception as e: | |
| logging.error(f"Internal server error: {str(e)}") | |
| raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") | |
| # Adding exception handling for Pydantic validation | |
| async def validation_exception_handler(request, exc): | |
| logging.error(f"Validation Error: {exc}") | |
| return JSONResponse({"detail": exc.errors()}, status_code=422) | |
| if __name__ == "__main__": | |
| uvicorn.run(app, host="0.0.0.0", port=7860) |