Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,29 @@
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
-
import threading
|
| 4 |
-
import boto3
|
| 5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, StoppingCriteriaList, pipeline
|
| 6 |
-
from fastapi import FastAPI, HTTPException, Request
|
| 7 |
-
from pydantic import BaseModel, field_validator
|
| 8 |
-
from huggingface_hub import hf_hub_download
|
| 9 |
-
import requests
|
| 10 |
import time
|
| 11 |
-
import asyncio
|
| 12 |
-
from fastapi.responses import StreamingResponse, Response
|
| 13 |
-
import torch
|
| 14 |
from io import BytesIO
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
import soundfile as sf
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")
|
| 19 |
|
| 20 |
-
app = FastAPI()
|
| 21 |
-
|
| 22 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
| 23 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 24 |
AWS_REGION = os.getenv("AWS_REGION")
|
|
@@ -40,6 +45,8 @@ class GenerateRequest(BaseModel):
|
|
| 40 |
chunk_delay: float = 0.0
|
| 41 |
stop_sequences: list[str] = []
|
| 42 |
|
|
|
|
|
|
|
| 43 |
@field_validator("model_name")
|
| 44 |
def model_name_cannot_be_empty(cls, v):
|
| 45 |
if not v:
|
|
@@ -59,66 +66,42 @@ class S3ModelLoader:
|
|
| 59 |
self.s3_client = s3_client
|
| 60 |
|
| 61 |
def _get_s3_uri(self, model_name):
|
| 62 |
-
return f"s3://{self.bucket_name}/
|
| 63 |
-
|
| 64 |
-
def
|
| 65 |
-
|
| 66 |
-
logging.info(f"Attempting to load model {model_name} from S3...")
|
| 67 |
-
model_files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"lilmeaty_garca/{model_name}")
|
| 68 |
-
if "Contents" not in model_files:
|
| 69 |
-
raise FileNotFoundError(f"Model files not found in S3 for {model_name}")
|
| 70 |
-
s3_model_path = f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
|
| 71 |
-
logging.info(f"Model {model_name} found on S3 at {s3_model_path}")
|
| 72 |
-
return s3_model_path
|
| 73 |
-
except Exception as e:
|
| 74 |
-
logging.error(f"Error downloading from S3: {e}")
|
| 75 |
-
raise HTTPException(status_code=500, detail=f"Error downloading model from S3: {e}")
|
| 76 |
-
|
| 77 |
-
def download_model_from_huggingface(self, model_name):
|
| 78 |
-
try:
|
| 79 |
-
logging.info(f"Downloading model {model_name} from Hugging Face...")
|
| 80 |
-
model_dir = hf_hub_download(model_name, token=HUGGINGFACE_HUB_TOKEN)
|
| 81 |
-
model_files = os.listdir(model_dir)
|
| 82 |
-
for model_file in model_files:
|
| 83 |
-
s3_path = f"lilmeaty_garca/{model_name}/{model_file}"
|
| 84 |
-
self.s3_client.upload_file(os.path.join(model_dir, model_file), self.bucket_name, s3_path)
|
| 85 |
-
logging.info(f"Model {model_name} saved to S3 successfully.")
|
| 86 |
-
except Exception as e:
|
| 87 |
-
logging.error(f"Error downloading model {model_name} from Hugging Face: {e}")
|
| 88 |
-
raise HTTPException(status_code=500, detail=f"Error downloading model from Hugging Face: {e}")
|
| 89 |
-
|
| 90 |
-
def download_all_models_in_background(self):
|
| 91 |
-
models_url = "https://huggingface.co/api/models"
|
| 92 |
-
try:
|
| 93 |
-
response = requests.get(models_url)
|
| 94 |
-
if response.status_code != 200:
|
| 95 |
-
logging.error("Error getting Hugging Face model list.")
|
| 96 |
-
raise HTTPException(status_code=500, detail="Error getting model list.")
|
| 97 |
-
models = response.json()
|
| 98 |
-
for model in models:
|
| 99 |
-
model_name = model["id"]
|
| 100 |
-
self.download_model_from_huggingface(model_name)
|
| 101 |
-
except Exception as e:
|
| 102 |
-
logging.error(f"Error downloading models in the background: {e}")
|
| 103 |
-
raise HTTPException(status_code=500, detail="Error downloading models in the background.")
|
| 104 |
-
|
| 105 |
-
def run_in_background(self):
|
| 106 |
-
threading.Thread(target=self.download_all_models_in_background, daemon=True).start()
|
| 107 |
-
|
| 108 |
-
def load_model_and_tokenizer(self, model_name):
|
| 109 |
try:
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
return model, tokenizer
|
| 115 |
-
except
|
| 116 |
-
logging.
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
|
| 120 |
-
async def startup_event():
|
| 121 |
-
model_loader.run_in_background()
|
| 122 |
|
| 123 |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
|
| 124 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
|
@@ -186,21 +169,29 @@ async def generate(request: Request, body: GenerateRequest):
|
|
| 186 |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
|
| 187 |
audio = generator(validated_body.input_text)
|
| 188 |
audio_bytesio = BytesIO()
|
| 189 |
-
sf.write(audio_bytesio, audio["
|
| 190 |
-
audio_bytesio.
|
| 191 |
-
return
|
| 192 |
|
| 193 |
elif validated_body.task_type == "text-to-video":
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
else:
|
| 196 |
-
raise HTTPException(status_code=400, detail="
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
except Exception as e:
|
| 199 |
-
logging.
|
| 200 |
-
raise HTTPException(status_code=500, detail=
|
| 201 |
|
| 202 |
-
import uvicorn
|
| 203 |
|
| 204 |
if __name__ == "__main__":
|
| 205 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 206 |
-
|
|
|
|
| 1 |
import os
|
| 2 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import time
|
|
|
|
|
|
|
|
|
|
| 4 |
from io import BytesIO
|
| 5 |
+
from typing import Union
|
| 6 |
+
|
| 7 |
+
from fastapi import FastAPI, HTTPException, Response, Request, UploadFile, File
|
| 8 |
+
from fastapi.responses import StreamingResponse
|
| 9 |
+
from pydantic import BaseModel, ValidationError, field_validator
|
| 10 |
+
from transformers import (
|
| 11 |
+
AutoConfig,
|
| 12 |
+
AutoModelForCausalLM,
|
| 13 |
+
AutoTokenizer,
|
| 14 |
+
pipeline,
|
| 15 |
+
GenerationConfig,
|
| 16 |
+
StoppingCriteriaList
|
| 17 |
+
)
|
| 18 |
+
import boto3
|
| 19 |
+
from huggingface_hub import hf_hub_download
|
| 20 |
import soundfile as sf
|
| 21 |
+
import numpy as np
|
| 22 |
+
import torch
|
| 23 |
+
import uvicorn
|
| 24 |
|
| 25 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")
|
| 26 |
|
|
|
|
|
|
|
| 27 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
| 28 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 29 |
AWS_REGION = os.getenv("AWS_REGION")
|
|
|
|
| 45 |
chunk_delay: float = 0.0
|
| 46 |
stop_sequences: list[str] = []
|
| 47 |
|
| 48 |
+
model_config = {"protected_namespaces": ()}
|
| 49 |
+
|
| 50 |
@field_validator("model_name")
|
| 51 |
def model_name_cannot_be_empty(cls, v):
|
| 52 |
if not v:
|
|
|
|
| 66 |
self.s3_client = s3_client
|
| 67 |
|
| 68 |
def _get_s3_uri(self, model_name):
|
| 69 |
+
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
| 70 |
+
|
| 71 |
+
async def load_model_and_tokenizer(self, model_name):
|
| 72 |
+
s3_uri = self._get_s3_uri(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
try:
|
| 74 |
+
logging.info(f"Trying to load {model_name} from S3...")
|
| 75 |
+
config = AutoConfig.from_pretrained(s3_uri)
|
| 76 |
+
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config)
|
| 77 |
+
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config)
|
| 78 |
+
|
| 79 |
+
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
|
| 80 |
+
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
|
| 81 |
+
|
| 82 |
+
logging.info(f"Loaded {model_name} from S3 successfully.")
|
| 83 |
return model, tokenizer
|
| 84 |
+
except EnvironmentError:
|
| 85 |
+
logging.info(f"Model {model_name} not found in S3. Downloading...")
|
| 86 |
+
try:
|
| 87 |
+
config = AutoConfig.from_pretrained(model_name)
|
| 88 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, config=config)
|
| 89 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN)
|
| 90 |
+
|
| 91 |
+
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
|
| 92 |
+
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
|
| 93 |
+
|
| 94 |
+
logging.info(f"Downloaded {model_name} successfully.")
|
| 95 |
+
logging.info(f"Saving {model_name} to S3...")
|
| 96 |
+
model.save_pretrained(s3_uri)
|
| 97 |
+
tokenizer.save_pretrained(s3_uri)
|
| 98 |
+
logging.info(f"Saved {model_name} to S3 successfully.")
|
| 99 |
+
return model, tokenizer
|
| 100 |
+
except Exception as e:
|
| 101 |
+
logging.exception(f"Error downloading/uploading model: {e}")
|
| 102 |
+
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
| 103 |
|
| 104 |
+
app = FastAPI()
|
|
|
|
|
|
|
| 105 |
|
| 106 |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
|
| 107 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
|
|
|
| 169 |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
|
| 170 |
audio = generator(validated_body.input_text)
|
| 171 |
audio_bytesio = BytesIO()
|
| 172 |
+
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
|
| 173 |
+
audio_bytes = audio_bytesio.getvalue()
|
| 174 |
+
return Response(content=audio_bytes, media_type="audio/wav")
|
| 175 |
|
| 176 |
elif validated_body.task_type == "text-to-video":
|
| 177 |
+
try:
|
| 178 |
+
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
|
| 179 |
+
video = generator(validated_body.input_text)
|
| 180 |
+
return Response(content=video, media_type="video/mp4")
|
| 181 |
+
except Exception as e:
|
| 182 |
+
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
|
| 183 |
+
|
| 184 |
else:
|
| 185 |
+
raise HTTPException(status_code=400, detail="Unsupported task type")
|
| 186 |
|
| 187 |
+
except HTTPException as e:
|
| 188 |
+
raise e
|
| 189 |
+
except ValidationError as e:
|
| 190 |
+
raise HTTPException(status_code=422, detail=e.errors())
|
| 191 |
except Exception as e:
|
| 192 |
+
logging.exception(f"An unexpected error occurred: {e}")
|
| 193 |
+
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
|
| 194 |
|
|
|
|
| 195 |
|
| 196 |
if __name__ == "__main__":
|
| 197 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|