Spaces:
Running
Running
manuschyan.h
commited on
Commit
·
b73366b
1
Parent(s):
981dd27
adding app
Browse files- app.py +28 -60
- movie_recommender.py +192 -0
app.py
CHANGED
|
@@ -1,64 +1,32 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
for message in client.chat_completion(
|
| 31 |
-
messages,
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from movie_recommender import MovieRecommender
|
| 3 |
+
|
| 4 |
+
# Initialize the recommender
|
| 5 |
+
recommender = MovieRecommender()
|
| 6 |
+
|
| 7 |
+
def get_recommendations(vibe_query):
|
| 8 |
+
"""
|
| 9 |
+
This function takes a user's query, gets recommendations from the
|
| 10 |
+
MovieRecommender, and returns them as a formatted string.
|
| 11 |
+
"""
|
| 12 |
+
if not vibe_query:
|
| 13 |
+
return "Please enter a vibe or movie description."
|
| 14 |
+
recommendations = recommender.recommend(vibe_query)
|
| 15 |
+
return recommendations
|
| 16 |
+
|
| 17 |
+
# Create the Gradio interface
|
| 18 |
+
iface = gr.Interface(
|
| 19 |
+
fn=get_recommendations,
|
| 20 |
+
inputs=gr.Textbox(lines=5, label="Describe the vibe of the movie you want to watch", placeholder="e.g., A scifi horror movie about a group of people who are trapped in a building and have to fight off an alien."),
|
| 21 |
+
outputs="text",
|
| 22 |
+
title="🎬 Movie Recommender",
|
| 23 |
+
description="Describe the kind of movie you're in the mood for, and I'll give you some recommendations based on the vibe.",
|
| 24 |
+
examples=[
|
| 25 |
+
["A heartwarming story about a talking animal who goes on an adventure."],
|
| 26 |
+
["A dark and gritty detective noir set in 1940s Los Angeles."],
|
| 27 |
+
["A mind-bending psychological thriller with an unreliable narrator."]
|
| 28 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
)
|
| 30 |
|
|
|
|
| 31 |
if __name__ == "__main__":
|
| 32 |
+
iface.launch()
|
movie_recommender.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_ollama.llms import OllamaLLM
|
| 2 |
+
|
| 3 |
+
from langchain.agents import AgentType
|
| 4 |
+
from langchain.agents import initialize_agent
|
| 5 |
+
|
| 6 |
+
from langchain.agents import Tool
|
| 7 |
+
|
| 8 |
+
from sentence_transformers import SentenceTransformer
|
| 9 |
+
from transformers import AutoTokenizer, AutoModel
|
| 10 |
+
import os
|
| 11 |
+
import glob
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
import json
|
| 14 |
+
import faiss
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def safe_get(data, *keys, default=None):
|
| 19 |
+
"""Safely get nested dictionary values with fallback to default."""
|
| 20 |
+
for key in keys:
|
| 21 |
+
try:
|
| 22 |
+
data = data[key]
|
| 23 |
+
except (KeyError, TypeError):
|
| 24 |
+
return default
|
| 25 |
+
return data
|
| 26 |
+
|
| 27 |
+
def get_movie_text(movie_json):
|
| 28 |
+
"""Convert movie JSON to embedable text"""
|
| 29 |
+
title = safe_get(movie_json, 'titleText', 'text', default='Unknown')
|
| 30 |
+
year = safe_get(movie_json, 'releaseYear', 'year', default='Unknown')
|
| 31 |
+
plot = safe_get(movie_json, 'plot', 'plotText', 'plainText', default='No plot available')
|
| 32 |
+
|
| 33 |
+
genres = safe_get(movie_json, 'genres', 'genres', default=[])
|
| 34 |
+
genre_text = ', '.join([g.get('text', '') for g in genres]) if genres else 'Unknown genre'
|
| 35 |
+
|
| 36 |
+
keywords = safe_get(movie_json, 'keywords', 'edges', default=[])
|
| 37 |
+
keyword_text = ', '.join([kw['node']['text'] for kw in keywords[:10]]) if keywords else 'No keywords'
|
| 38 |
+
|
| 39 |
+
rating = safe_get(movie_json, 'ratingsSummary', 'aggregateRating', default='N/A')
|
| 40 |
+
|
| 41 |
+
movie_text = f"Title: {title}. Year: {year}. Genres: {genre_text}. Plot: {plot}. Keywords: {keyword_text}. Rating: {rating}"
|
| 42 |
+
|
| 43 |
+
return movie_text
|
| 44 |
+
|
| 45 |
+
class MovieRecommender:
|
| 46 |
+
def __init__(self,
|
| 47 |
+
model_name='intfloat/multilingual-e5-large-instruct',
|
| 48 |
+
index_path="movie_index.faiss",
|
| 49 |
+
texts_path="movie_texts.json",
|
| 50 |
+
data_path="archive/movie_dataset/movie_dataset/*.json"):
|
| 51 |
+
|
| 52 |
+
self.model = SentenceTransformer(model_name)
|
| 53 |
+
self.index_path = index_path
|
| 54 |
+
self.texts_path = texts_path
|
| 55 |
+
self.data_path = data_path
|
| 56 |
+
self.llm = OllamaLLM(model="huihui_ai/qwen3-abliterated")
|
| 57 |
+
self.all_movies_text = []
|
| 58 |
+
self.faiss_index = None
|
| 59 |
+
|
| 60 |
+
self._load_or_build_index()
|
| 61 |
+
|
| 62 |
+
def _load_movies(self):
|
| 63 |
+
movie_files = glob.glob(self.data_path)[:3]
|
| 64 |
+
print(f"Processing {len(movie_files)} movie files...")
|
| 65 |
+
|
| 66 |
+
all_movies_data = []
|
| 67 |
+
for file in tqdm(movie_files, desc="Loading movie files"):
|
| 68 |
+
try:
|
| 69 |
+
with open(file, "r") as f:
|
| 70 |
+
data = json.load(f)
|
| 71 |
+
all_movies_data.extend(data)
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print(f"Error loading {file}: {e}")
|
| 74 |
+
|
| 75 |
+
print(f"Loaded data for {len(all_movies_data)} movies.")
|
| 76 |
+
self.all_movies_text = [get_movie_text(movie) for movie in tqdm(all_movies_data, desc="Extracting text from movies")]
|
| 77 |
+
print(f"Processed {len(self.all_movies_text)} movies total")
|
| 78 |
+
|
| 79 |
+
def _build_index(self, batch_size=10):
|
| 80 |
+
print(f"Embedding movies in batches of {batch_size}...")
|
| 81 |
+
|
| 82 |
+
self.faiss_index = faiss.IndexFlatL2(1024)
|
| 83 |
+
|
| 84 |
+
num_batches = (len(self.all_movies_text) + batch_size - 1) // batch_size
|
| 85 |
+
|
| 86 |
+
for i in tqdm(range(num_batches), desc="Embedding batches"):
|
| 87 |
+
batch_texts = self.all_movies_text[i*batch_size:(i+1)*batch_size]
|
| 88 |
+
if not batch_texts:
|
| 89 |
+
continue
|
| 90 |
+
document_embeddings = self.model.encode(batch_texts)
|
| 91 |
+
self.faiss_index.add(document_embeddings)
|
| 92 |
+
|
| 93 |
+
print(f"FAISS index built with {self.faiss_index.ntotal} vectors.")
|
| 94 |
+
|
| 95 |
+
print(f"Saving FAISS index to {self.index_path}")
|
| 96 |
+
faiss.write_index(self.faiss_index, self.index_path)
|
| 97 |
+
|
| 98 |
+
with open(self.texts_path, "w") as f:
|
| 99 |
+
json.dump(self.all_movies_text, f)
|
| 100 |
+
print(f"Saved movie texts to {self.texts_path}")
|
| 101 |
+
|
| 102 |
+
def _load_or_build_index(self):
|
| 103 |
+
if os.path.exists(self.index_path) and os.path.exists(self.texts_path):
|
| 104 |
+
print(f"Loading existing FAISS index from {self.index_path}")
|
| 105 |
+
self.faiss_index = faiss.read_index(self.index_path)
|
| 106 |
+
|
| 107 |
+
print(f"Loading movie texts from {self.texts_path}")
|
| 108 |
+
with open(self.texts_path, "r") as f:
|
| 109 |
+
self.all_movies_text = json.load(f)
|
| 110 |
+
print(f"Loaded {len(self.all_movies_text)} movie texts.")
|
| 111 |
+
else:
|
| 112 |
+
print("Building new FAISS index...")
|
| 113 |
+
self._load_movies()
|
| 114 |
+
self._build_index()
|
| 115 |
+
|
| 116 |
+
def search(self, query, k=50):
|
| 117 |
+
if self.faiss_index is None:
|
| 118 |
+
raise Exception("FAISS index is not built or loaded.")
|
| 119 |
+
|
| 120 |
+
query_embedding = self.model.encode([query], prompt_name="query")
|
| 121 |
+
distances, indices = self.faiss_index.search(query_embedding, k)
|
| 122 |
+
|
| 123 |
+
top_indices = indices[0]
|
| 124 |
+
|
| 125 |
+
extracted_topk_movies = [self.all_movies_text[i] for i in top_indices]
|
| 126 |
+
|
| 127 |
+
return extracted_topk_movies
|
| 128 |
+
|
| 129 |
+
def recommend(self, vibe_query):
|
| 130 |
+
print(f"Searching for movies with vibe: {vibe_query}")
|
| 131 |
+
candidate_movies = self.search(vibe_query)
|
| 132 |
+
|
| 133 |
+
prompt = f"""
|
| 134 |
+
You are a movie recommendation expert. I'm looking for movies with this vibe: "{vibe_query}"
|
| 135 |
+
|
| 136 |
+
Here are 50 candidate movies that were found using semantic similarity:
|
| 137 |
+
|
| 138 |
+
Create a vibe profile for each of these movies and then rank the movies based on the vibe profiles matching the requested vibe.
|
| 139 |
+
|
| 140 |
+
{''.join(candidate_movies)}
|
| 141 |
+
|
| 142 |
+
Please rank the TOP 10 movies that best match the requested vibe "{vibe_query}". For each movie, provide:
|
| 143 |
+
|
| 144 |
+
1. **Movie Title and Year**
|
| 145 |
+
2. **Rank Score** (1-10, where 10 is a perfect match)
|
| 146 |
+
3. **Reason** (2-3 sentences explaining why this movie matches the vibe)
|
| 147 |
+
4. **Description** (brief summary focusing on elements that match the vibe)
|
| 148 |
+
5. **Hook** (1-2 hooky sentences that capture the essence of the movie)
|
| 149 |
+
|
| 150 |
+
Format your response exactly like this:
|
| 151 |
+
|
| 152 |
+
**TOP 10 MOVIE RECOMMENDATIONS:**
|
| 153 |
+
|
| 154 |
+
[Movie Title] ([Year])**
|
| 155 |
+
- **Rank Score:** [1-10]
|
| 156 |
+
- **Reason:** [2-3 sentences explaining the match]
|
| 157 |
+
- **Description:** [Brief summary highlighting vibe-matching elements]
|
| 158 |
+
- **Hook:** [1-2 hooky sentences that capture the essence of the movie]
|
| 159 |
+
|
| 160 |
+
**2. [Movie Title] ([Year])**
|
| 161 |
+
- **Rank Score:** [1-10]
|
| 162 |
+
- **Reason:** [2-3 sentences explaining the match]
|
| 163 |
+
- **Description:** [Brief summary highlighting vibe-matching elements]
|
| 164 |
+
- **Hook:** [1-2 hooky sentences that capture the essence of the movie]
|
| 165 |
+
|
| 166 |
+
**3. [Movie Title] ([Year])**
|
| 167 |
+
- **Rank Score:** [1-10]
|
| 168 |
+
- **Reason:** [2-3 sentences explaining the match]
|
| 169 |
+
- **Description:** [Brief summary highlighting vibe-matching elements]
|
| 170 |
+
- **Hook:** [1-2 hooky sentencess that capture the essence of the movie]
|
| 171 |
+
|
| 172 |
+
...
|
| 173 |
+
|
| 174 |
+
**10. [Movie Title] ([Year])**
|
| 175 |
+
- **Rank Score:** [1-10]
|
| 176 |
+
- **Reason:** [2-3 sentences explaining the match]
|
| 177 |
+
- **Description:** [Brief summary highlighting vibe-matching elements]
|
| 178 |
+
- **Hook:** [1-2 hooky sentences that capture the essence of the movie]
|
| 179 |
+
|
| 180 |
+
Focus on how well each movie captures the specific vibe requested, not just general quality.
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
response = self.llm.invoke(prompt)
|
| 184 |
+
return response
|
| 185 |
+
|
| 186 |
+
if __name__ == "__main__":
|
| 187 |
+
|
| 188 |
+
recommender = MovieRecommender()
|
| 189 |
+
|
| 190 |
+
query = "A scifi horror movie about a group of people who are trapped in a building and have to fight off an alien."
|
| 191 |
+
recommendations = recommender.recommend(query)
|
| 192 |
+
print(recommendations)
|