IdlecloudX's picture
Update app.py
93e2627 verified
import spaces
import gradio as gr
from gradio_imageslider import ImageSlider
from PIL import Image
import numpy as np
from aura_sr import AuraSR
import torch
torch.set_default_tensor_type(torch.FloatTensor)
original_load = torch.load
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
torch.load = original_load
@spaces.GPU
def process_image(input_image, scale_factor):
if input_image is None:
raise gr.Error("请提供一张图片。")
pil_image = Image.fromarray(input_image)
original_width, original_height = pil_image.size
upscaled_image = aura_sr.upscale_4x(pil_image)
target_scale = float(scale_factor)
if target_scale != 4.0:
# 计算目标尺寸
new_width = int(original_width * target_scale)
new_height = int(original_height * target_scale)
# 使用高质量重采样算法调整尺寸
upscaled_image = upscaled_image.resize((new_width, new_height), Image.LANCZOS)
result_array = np.array(upscaled_image)
return (input_image, result_array), upscaled_image
title = """<h1 align="center">AuraSR-v2 动态放大版</h1>"""
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="输入图片", type="numpy")
scale_slider = gr.Slider(
minimum=1.0,
maximum=4.0,
value=4.0,
step=0.5,
label="放大倍数 (Scale Factor)"
)
process_btn = gr.Button(value="开始放大", variant="primary")
with gr.Column(scale=1):
# 图片对比滑块
output_slider = ImageSlider(label="对比效果", type="numpy")
download_output = gr.Image(
label="下载结果 (PNG)",
type="pil",
format="png",
interactive=False,
visible=True
)
process_btn.click(
fn=process_image,
inputs=[input_image, scale_slider],
outputs=[output_slider, download_output]
)
demo.launch(debug=True)