Spaces:
Sleeping
Sleeping
Upload app (1).py
Browse files- app (1).py +404 -0
app (1).py
ADDED
|
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import requests
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
|
| 9 |
+
# Download the TFLite model and labels from your Hugging Face repository
|
| 10 |
+
MODEL_REPO = "JahnaviBhansali/mobilenet-v2-ethos-u55"
|
| 11 |
+
MODEL_FILE = "mobilenet_v2_1.0_224_INT8.tflite" # Using original INT8 model for Gradio compatibility
|
| 12 |
+
VELA_MODEL_FILE = "mobilenet_v2_1.0_224_INT8_vela.tflite" # Vela-optimized model for Ethos-U55
|
| 13 |
+
LABELS_FILE = "labelmappings.txt"
|
| 14 |
+
|
| 15 |
+
print("Downloading model and labels from Hugging Face...")
|
| 16 |
+
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE)
|
| 17 |
+
vela_model_path = hf_hub_download(repo_id=MODEL_REPO, filename=VELA_MODEL_FILE) # Download Vela model for reference
|
| 18 |
+
labels_path = hf_hub_download(repo_id=MODEL_REPO, filename=LABELS_FILE)
|
| 19 |
+
|
| 20 |
+
# Load the TFLite model
|
| 21 |
+
interpreter = tf.lite.Interpreter(model_path=model_path)
|
| 22 |
+
interpreter.allocate_tensors()
|
| 23 |
+
|
| 24 |
+
# Get input and output details
|
| 25 |
+
input_details = interpreter.get_input_details()
|
| 26 |
+
output_details = interpreter.get_output_details()
|
| 27 |
+
|
| 28 |
+
# Load class labels
|
| 29 |
+
with open(labels_path, 'r') as f:
|
| 30 |
+
class_labels = [line.strip() for line in f.readlines()]
|
| 31 |
+
|
| 32 |
+
print(f"Model loaded successfully! Input shape: {input_details[0]['shape']}")
|
| 33 |
+
print(f"Number of classes: {len(class_labels)}")
|
| 34 |
+
print(f"Vela-optimized model also available: {VELA_MODEL_FILE}")
|
| 35 |
+
# Force rebuild with modern design
|
| 36 |
+
print(f"Repository: {MODEL_REPO}")
|
| 37 |
+
|
| 38 |
+
def preprocess_image(image):
|
| 39 |
+
"""
|
| 40 |
+
Preprocess image for MobileNetV2 INT8 quantized model.
|
| 41 |
+
"""
|
| 42 |
+
# Resize to 224x224 as expected by the model
|
| 43 |
+
image = image.resize((224, 224))
|
| 44 |
+
|
| 45 |
+
# Convert to numpy array
|
| 46 |
+
img_array = np.array(image, dtype=np.float32)
|
| 47 |
+
|
| 48 |
+
# Normalize to [0, 1] then scale to [-1, 1] for MobileNetV2
|
| 49 |
+
img_array = img_array / 255.0
|
| 50 |
+
img_array = (img_array - 0.5) * 2.0
|
| 51 |
+
|
| 52 |
+
# Quantize to INT8 range [-128, 127]
|
| 53 |
+
img_array = img_array * 127.0
|
| 54 |
+
img_array = np.clip(img_array, -128, 127).astype(np.int8)
|
| 55 |
+
|
| 56 |
+
# Add batch dimension
|
| 57 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 58 |
+
|
| 59 |
+
return img_array
|
| 60 |
+
|
| 61 |
+
def classify_image(image):
|
| 62 |
+
"""
|
| 63 |
+
Classify the input image and return top-3 predictions with confidence scores.
|
| 64 |
+
"""
|
| 65 |
+
if image is None:
|
| 66 |
+
return "Please upload an image."
|
| 67 |
+
|
| 68 |
+
try:
|
| 69 |
+
# Handle different image inputs
|
| 70 |
+
if isinstance(image, str):
|
| 71 |
+
# Handle URL
|
| 72 |
+
response = requests.get(image)
|
| 73 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 74 |
+
elif isinstance(image, np.ndarray):
|
| 75 |
+
image = Image.fromarray(image).convert("RGB")
|
| 76 |
+
else:
|
| 77 |
+
image = image.convert("RGB")
|
| 78 |
+
|
| 79 |
+
# Preprocess the image
|
| 80 |
+
input_data = preprocess_image(image)
|
| 81 |
+
|
| 82 |
+
# Set input tensor
|
| 83 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
| 84 |
+
|
| 85 |
+
# Run inference
|
| 86 |
+
interpreter.invoke()
|
| 87 |
+
|
| 88 |
+
# Get output tensor
|
| 89 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
| 90 |
+
predictions = output_data[0] # Remove batch dimension
|
| 91 |
+
|
| 92 |
+
# Convert from INT8 quantized output to probabilities
|
| 93 |
+
# Dequantize the output
|
| 94 |
+
scale = output_details[0]['quantization'][0]
|
| 95 |
+
zero_point = output_details[0]['quantization'][1]
|
| 96 |
+
predictions = scale * (predictions.astype(np.float32) - zero_point)
|
| 97 |
+
|
| 98 |
+
# Apply softmax to get probabilities
|
| 99 |
+
predictions = tf.nn.softmax(predictions).numpy()
|
| 100 |
+
|
| 101 |
+
# Get top-3 predictions
|
| 102 |
+
top3_indices = np.argsort(predictions)[-3:][::-1]
|
| 103 |
+
|
| 104 |
+
# Format results
|
| 105 |
+
results = []
|
| 106 |
+
for i, idx in enumerate(top3_indices):
|
| 107 |
+
class_name = class_labels[idx] if idx < len(class_labels) else f"Class {idx}"
|
| 108 |
+
confidence = predictions[idx]
|
| 109 |
+
results.append(f"**{class_name}**: {confidence:.1%}")
|
| 110 |
+
|
| 111 |
+
# Create formatted output
|
| 112 |
+
result_text = "\n".join(f"{idx+1}. {result}" for idx, result in enumerate(results))
|
| 113 |
+
|
| 114 |
+
return result_text
|
| 115 |
+
|
| 116 |
+
except Exception:
|
| 117 |
+
return "Error processing image. Please try again."
|
| 118 |
+
|
| 119 |
+
def load_example_image(example_path):
|
| 120 |
+
"""Load example images for demonstration."""
|
| 121 |
+
example_urls = {
|
| 122 |
+
"Cat": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
| 123 |
+
"Dog": "https://images.unsplash.com/photo-1587300003388-59208cc962cb?w=500",
|
| 124 |
+
"Car": "https://images.unsplash.com/photo-1494905998402-395d579af36f?w=500",
|
| 125 |
+
"Food": "https://images.unsplash.com/photo-1565299624946-b28f40a0ca4b?w=500",
|
| 126 |
+
"Nature": "https://images.unsplash.com/photo-1441974231531-c6227db76b6e?w=500"
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
if example_path in example_urls:
|
| 130 |
+
try:
|
| 131 |
+
response = requests.get(example_urls[example_path])
|
| 132 |
+
return Image.open(BytesIO(response.content))
|
| 133 |
+
except:
|
| 134 |
+
return None
|
| 135 |
+
return None
|
| 136 |
+
|
| 137 |
+
# Create Gradio interface
|
| 138 |
+
with gr.Blocks(
|
| 139 |
+
theme=gr.themes.Default(),
|
| 140 |
+
title="MobileNetV2 Classification",
|
| 141 |
+
css="""
|
| 142 |
+
.gradio-container {
|
| 143 |
+
max-width: 1200px !important;
|
| 144 |
+
margin: auto !important;
|
| 145 |
+
background-color: #fafafa !important;
|
| 146 |
+
font-family: 'Inter', 'Segoe UI', -apple-system, sans-serif !important;
|
| 147 |
+
}
|
| 148 |
+
.main-header {
|
| 149 |
+
text-align: center;
|
| 150 |
+
margin: 2rem 0 3rem 0;
|
| 151 |
+
color: #3b82f6 !important;
|
| 152 |
+
font-weight: 600;
|
| 153 |
+
font-size: 2.5rem;
|
| 154 |
+
letter-spacing: -0.025em;
|
| 155 |
+
}
|
| 156 |
+
.card {
|
| 157 |
+
background: white !important;
|
| 158 |
+
border-radius: 12px !important;
|
| 159 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06) !important;
|
| 160 |
+
border: 1px solid #e5e7eb !important;
|
| 161 |
+
margin-bottom: 1.5rem !important;
|
| 162 |
+
transition: all 0.2s ease-in-out !important;
|
| 163 |
+
overflow: hidden !important;
|
| 164 |
+
}
|
| 165 |
+
.card > * {
|
| 166 |
+
padding: 0 !important;
|
| 167 |
+
margin: 0 !important;
|
| 168 |
+
}
|
| 169 |
+
.card:hover {
|
| 170 |
+
box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05) !important;
|
| 171 |
+
transform: translateY(-1px) !important;
|
| 172 |
+
}
|
| 173 |
+
.card-header {
|
| 174 |
+
background: linear-gradient(135deg, #1975cf 0%, #1557b0 100%) !important;
|
| 175 |
+
color: white !important;
|
| 176 |
+
padding: 1rem 1.5rem !important;
|
| 177 |
+
border-radius: 12px 12px 0 0 !important;
|
| 178 |
+
font-weight: 600 !important;
|
| 179 |
+
font-size: 1.1rem !important;
|
| 180 |
+
}
|
| 181 |
+
.card-header * {
|
| 182 |
+
color: white !important;
|
| 183 |
+
}
|
| 184 |
+
.card-content {
|
| 185 |
+
padding: 1.5rem !important;
|
| 186 |
+
color: #4b5563 !important;
|
| 187 |
+
line-height: 1.6 !important;
|
| 188 |
+
background: white !important;
|
| 189 |
+
}
|
| 190 |
+
.stats-grid {
|
| 191 |
+
display: grid !important;
|
| 192 |
+
grid-template-columns: 1fr 1fr !important;
|
| 193 |
+
gap: 1.5rem !important;
|
| 194 |
+
margin-top: 1.5rem !important;
|
| 195 |
+
}
|
| 196 |
+
.stat-item {
|
| 197 |
+
background: #f8fafc !important;
|
| 198 |
+
padding: 1rem !important;
|
| 199 |
+
border-radius: 8px !important;
|
| 200 |
+
border-left: 4px solid #1975cf !important;
|
| 201 |
+
}
|
| 202 |
+
.stat-label {
|
| 203 |
+
font-weight: 600 !important;
|
| 204 |
+
color: #4b5563 !important;
|
| 205 |
+
font-size: 0.9rem !important;
|
| 206 |
+
margin-bottom: 0.5rem !important;
|
| 207 |
+
}
|
| 208 |
+
.stat-value {
|
| 209 |
+
color: #4b5563 !important;
|
| 210 |
+
font-size: 0.85rem !important;
|
| 211 |
+
}
|
| 212 |
+
.btn-example {
|
| 213 |
+
background: #f1f5f9 !important;
|
| 214 |
+
border: 1px solid #cbd5e1 !important;
|
| 215 |
+
color: #4b5563 !important;
|
| 216 |
+
border-radius: 6px !important;
|
| 217 |
+
transition: all 0.2s ease !important;
|
| 218 |
+
margin: 0.35rem !important;
|
| 219 |
+
padding: 0.5rem 1rem !important;
|
| 220 |
+
}
|
| 221 |
+
.btn-example:hover {
|
| 222 |
+
background: #1975cf !important;
|
| 223 |
+
border-color: #1975cf !important;
|
| 224 |
+
color: white !important;
|
| 225 |
+
}
|
| 226 |
+
.btn-primary {
|
| 227 |
+
background: #1975cf !important;
|
| 228 |
+
border-color: #1975cf !important;
|
| 229 |
+
color: white !important;
|
| 230 |
+
}
|
| 231 |
+
.btn-primary:hover {
|
| 232 |
+
background: #1557b0 !important;
|
| 233 |
+
border-color: #1557b0 !important;
|
| 234 |
+
}
|
| 235 |
+
.markdown {
|
| 236 |
+
color: #374151 !important;
|
| 237 |
+
}
|
| 238 |
+
.results-text {
|
| 239 |
+
color: #4b5563 !important;
|
| 240 |
+
font-weight: 500 !important;
|
| 241 |
+
padding: 0 !important;
|
| 242 |
+
margin: 0 !important;
|
| 243 |
+
}
|
| 244 |
+
.results-text p {
|
| 245 |
+
color: #4b5563 !important;
|
| 246 |
+
margin: 0.5rem 0 !important;
|
| 247 |
+
}
|
| 248 |
+
.results-text * {
|
| 249 |
+
color: #4b5563 !important;
|
| 250 |
+
}
|
| 251 |
+
div[data-testid="markdown"] p {
|
| 252 |
+
color: #4b5563 !important;
|
| 253 |
+
}
|
| 254 |
+
.prose {
|
| 255 |
+
color: #4b5563 !important;
|
| 256 |
+
}
|
| 257 |
+
.prose * {
|
| 258 |
+
color: #4b5563 !important;
|
| 259 |
+
}
|
| 260 |
+
.example-grid {
|
| 261 |
+
display: grid !important;
|
| 262 |
+
grid-template-columns: 1fr !important;
|
| 263 |
+
gap: 1.5rem !important;
|
| 264 |
+
margin-top: 1.5rem !important;
|
| 265 |
+
}
|
| 266 |
+
.example-item {
|
| 267 |
+
background: #f8fafc !important;
|
| 268 |
+
padding: 1rem !important;
|
| 269 |
+
border-radius: 8px !important;
|
| 270 |
+
border-left: 4px solid #1975cf !important;
|
| 271 |
+
}
|
| 272 |
+
.example-label {
|
| 273 |
+
font-weight: 600 !important;
|
| 274 |
+
color: #1975cf !important;
|
| 275 |
+
font-size: 0.9rem !important;
|
| 276 |
+
margin-bottom: 0.5rem !important;
|
| 277 |
+
}
|
| 278 |
+
.example-buttons {
|
| 279 |
+
color: #374151 !important;
|
| 280 |
+
font-size: 0.85rem !important;
|
| 281 |
+
}
|
| 282 |
+
.results-grid {
|
| 283 |
+
display: grid !important;
|
| 284 |
+
grid-template-columns: 1fr !important;
|
| 285 |
+
gap: 1.5rem !important;
|
| 286 |
+
margin-top: 1.5rem !important;
|
| 287 |
+
}
|
| 288 |
+
.results-item {
|
| 289 |
+
background: #f8fafc !important;
|
| 290 |
+
padding: 1rem !important;
|
| 291 |
+
border-radius: 8px !important;
|
| 292 |
+
border-left: 4px solid #1975cf !important;
|
| 293 |
+
}
|
| 294 |
+
.results-label {
|
| 295 |
+
font-weight: 600 !important;
|
| 296 |
+
color: #1975cf !important;
|
| 297 |
+
font-size: 0.9rem !important;
|
| 298 |
+
margin-bottom: 0.5rem !important;
|
| 299 |
+
}
|
| 300 |
+
.results-content {
|
| 301 |
+
color: #374151 !important;
|
| 302 |
+
font-size: 0.85rem !important;
|
| 303 |
+
}
|
| 304 |
+
"""
|
| 305 |
+
) as demo:
|
| 306 |
+
|
| 307 |
+
gr.HTML("""
|
| 308 |
+
<div class="main-header">
|
| 309 |
+
<h1>MobileNetV2 Classification</h1>
|
| 310 |
+
</div>
|
| 311 |
+
""")
|
| 312 |
+
|
| 313 |
+
with gr.Row():
|
| 314 |
+
with gr.Column(scale=1):
|
| 315 |
+
|
| 316 |
+
input_image = gr.Image(
|
| 317 |
+
label="",
|
| 318 |
+
type="pil",
|
| 319 |
+
height=280
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
classify_btn = gr.Button(
|
| 323 |
+
"Classify Image",
|
| 324 |
+
variant="primary",
|
| 325 |
+
size="lg",
|
| 326 |
+
elem_classes=["btn-primary"]
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
with gr.Group(elem_classes=["card"]):
|
| 330 |
+
gr.HTML('<div class="card-header"><span style="color: white; font-weight: 600;">Example Images</span></div>')
|
| 331 |
+
|
| 332 |
+
with gr.Column(elem_classes=["card-content"]):
|
| 333 |
+
with gr.Row():
|
| 334 |
+
example_cat = gr.Button("Cat", size="sm", elem_classes=["btn-example"])
|
| 335 |
+
example_dog = gr.Button("Dog", size="sm", elem_classes=["btn-example"])
|
| 336 |
+
|
| 337 |
+
with gr.Row():
|
| 338 |
+
example_car = gr.Button("Car", size="sm", elem_classes=["btn-example"])
|
| 339 |
+
example_food = gr.Button("Food", size="sm", elem_classes=["btn-example"])
|
| 340 |
+
|
| 341 |
+
with gr.Column(scale=1):
|
| 342 |
+
gr.HTML("""
|
| 343 |
+
<div class="card">
|
| 344 |
+
<div class="card-header">
|
| 345 |
+
<span style="color: white; font-weight: 600;">Model Performance</span>
|
| 346 |
+
</div>
|
| 347 |
+
<div class="card-content">
|
| 348 |
+
<div class="stats-grid">
|
| 349 |
+
<div class="stat-item">
|
| 350 |
+
<div class="stat-label">Performance</div>
|
| 351 |
+
<div class="stat-value">
|
| 352 |
+
6M cycles/inference<br>
|
| 353 |
+
15.14ms @ 400MHz<br>
|
| 354 |
+
NPU Coverage: 100%<br>
|
| 355 |
+
ImageNet Top-1: 69.7%
|
| 356 |
+
</div>
|
| 357 |
+
</div>
|
| 358 |
+
<div class="stat-item">
|
| 359 |
+
<div class="stat-label">Memory Usage</div>
|
| 360 |
+
<div class="stat-value">
|
| 361 |
+
SRAM: 353.5 KiB<br>
|
| 362 |
+
Flash: 3.6 MiB<br>
|
| 363 |
+
Model: MobileNetV2<br>
|
| 364 |
+
Input: 224×224×3
|
| 365 |
+
</div>
|
| 366 |
+
</div>
|
| 367 |
+
</div>
|
| 368 |
+
</div>
|
| 369 |
+
</div>
|
| 370 |
+
""")
|
| 371 |
+
|
| 372 |
+
with gr.Group(elem_classes=["card"]):
|
| 373 |
+
gr.HTML('<div class="card-header"><span style="color: white; font-weight: 600;">Classification Results</span></div>')
|
| 374 |
+
|
| 375 |
+
with gr.Column(elem_classes=["card-content"]):
|
| 376 |
+
output_text = gr.Markdown(
|
| 377 |
+
value="Upload an image to see predictions...",
|
| 378 |
+
label="",
|
| 379 |
+
elem_classes=["results-text"]
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
# Set up event handlers
|
| 383 |
+
classify_btn.click(
|
| 384 |
+
fn=classify_image,
|
| 385 |
+
inputs=input_image,
|
| 386 |
+
outputs=output_text
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
# Example image handlers
|
| 390 |
+
example_cat.click(lambda: load_example_image("Cat"), outputs=input_image)
|
| 391 |
+
example_dog.click(lambda: load_example_image("Dog"), outputs=input_image)
|
| 392 |
+
example_car.click(lambda: load_example_image("Car"), outputs=input_image)
|
| 393 |
+
example_food.click(lambda: load_example_image("Food"), outputs=input_image)
|
| 394 |
+
|
| 395 |
+
# Auto-classify when image is uploaded
|
| 396 |
+
input_image.change(
|
| 397 |
+
fn=classify_image,
|
| 398 |
+
inputs=input_image,
|
| 399 |
+
outputs=output_text
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
# Launch the demo
|
| 403 |
+
if __name__ == "__main__":
|
| 404 |
+
demo.launch()
|