Spaces:
Sleeping
Sleeping
Fix consistent white background across entire viewport
Browse filesRemove patchy background issue where HuggingFace shows white content area with black margins.
Changed background-color from #fafafa to white for consistent styling.
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <[email protected]>
app.py
CHANGED
|
@@ -5,18 +5,12 @@ from io import BytesIO
|
|
| 5 |
from PIL import Image
|
| 6 |
import tensorflow as tf
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
-
import tempfile
|
| 9 |
-
import shutil
|
| 10 |
-
import os
|
| 11 |
-
import subprocess
|
| 12 |
-
import re
|
| 13 |
|
| 14 |
# Download the TFLite model and labels from your Hugging Face repository
|
| 15 |
MODEL_REPO = "JahnaviBhansali/mobilenet-v2-ethos-u55"
|
| 16 |
MODEL_FILE = "mobilenet_v2_1.0_224_INT8.tflite" # Using original INT8 model for Gradio compatibility
|
| 17 |
VELA_MODEL_FILE = "mobilenet_v2_1.0_224_INT8_vela.tflite" # Vela-optimized model for Ethos-U55
|
| 18 |
LABELS_FILE = "labelmappings.txt"
|
| 19 |
-
DEFAULT_CONFIG = "u55_eval_with_TA_config_400_and_200_MHz.ini"
|
| 20 |
|
| 21 |
print("Downloading model and labels from Hugging Face...")
|
| 22 |
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE)
|
|
@@ -41,166 +35,6 @@ print(f"Vela-optimized model also available: {VELA_MODEL_FILE}")
|
|
| 41 |
# Force rebuild with modern design
|
| 42 |
print(f"Repository: {MODEL_REPO}")
|
| 43 |
|
| 44 |
-
# Vela config file is now copied from SR app
|
| 45 |
-
|
| 46 |
-
def extract_summary_from_log(log_text):
|
| 47 |
-
summary_keys = [
|
| 48 |
-
"Accelerator configuration",
|
| 49 |
-
"Accelerator clock",
|
| 50 |
-
"Total SRAM used",
|
| 51 |
-
"Total On-chip Flash used",
|
| 52 |
-
"CPU operators",
|
| 53 |
-
"NPU operators",
|
| 54 |
-
"Batch Inference time"
|
| 55 |
-
]
|
| 56 |
-
summary = []
|
| 57 |
-
for key in summary_keys:
|
| 58 |
-
match = re.search(rf"{re.escape(key)}\s+(.+)", log_text)
|
| 59 |
-
if match:
|
| 60 |
-
value = match.group(1).strip()
|
| 61 |
-
if key == "Batch Inference time":
|
| 62 |
-
value = value.split(",")[0].strip()
|
| 63 |
-
key = "Inference time"
|
| 64 |
-
summary.append((key, value))
|
| 65 |
-
return summary
|
| 66 |
-
|
| 67 |
-
def run_vela(model_file):
|
| 68 |
-
accel = "ethos-u55-128"
|
| 69 |
-
optimise = "Size"
|
| 70 |
-
mem_mode = "Sram_Only"
|
| 71 |
-
sys_config = "Ethos_U55_400MHz_SRAM_3.2_GBs_Flash_0.05_GBs"
|
| 72 |
-
tmpdir = tempfile.mkdtemp()
|
| 73 |
-
try:
|
| 74 |
-
# Use the original uploaded model filename
|
| 75 |
-
original_model_name = os.path.basename(model_file)
|
| 76 |
-
model_path = os.path.join(tmpdir, original_model_name)
|
| 77 |
-
shutil.copy(model_file, model_path)
|
| 78 |
-
|
| 79 |
-
config_path = os.path.join(tmpdir, DEFAULT_CONFIG)
|
| 80 |
-
shutil.copy(DEFAULT_CONFIG, config_path)
|
| 81 |
-
|
| 82 |
-
output_dir = os.path.join(tmpdir, "vela_out")
|
| 83 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 84 |
-
|
| 85 |
-
cmd = [
|
| 86 |
-
"vela",
|
| 87 |
-
f"--accelerator-config={accel}",
|
| 88 |
-
f"--optimise={optimise}",
|
| 89 |
-
f"--config={config_path}",
|
| 90 |
-
f"--memory-mode={mem_mode}",
|
| 91 |
-
f"--system-config={sys_config}",
|
| 92 |
-
model_path,
|
| 93 |
-
"--verbose-cycle-estimate",
|
| 94 |
-
"--verbose-performance",
|
| 95 |
-
f"--output-dir={output_dir}"
|
| 96 |
-
]
|
| 97 |
-
|
| 98 |
-
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
|
| 99 |
-
vela_stdout = result.stdout
|
| 100 |
-
|
| 101 |
-
# Check for unsupported model patterns in logs
|
| 102 |
-
unsupported_patterns = [
|
| 103 |
-
"Warning: Unsupported TensorFlow Lite semantics",
|
| 104 |
-
"Network Tops/s nan Tops/s",
|
| 105 |
-
"Neural network macs 0 MACs/batch"
|
| 106 |
-
]
|
| 107 |
-
if any(pat in vela_stdout for pat in unsupported_patterns):
|
| 108 |
-
summary_html = (
|
| 109 |
-
"<div class='sr110-results' style='background:#fff3f3;border-radius:14px;padding:24px 18px 18px 18px;"
|
| 110 |
-
"max-width:430px;min-width:320px;width:100%;margin:auto;color:#d32f2f;font-family:sans-serif;"
|
| 111 |
-
"font-size:1.1em;text-align:left;font-weight:600;'>"
|
| 112 |
-
"This model has unsupported layers and needs investigation based on layers.<br>"
|
| 113 |
-
"Please use Vela compiler on your Host Machine for further analysis."
|
| 114 |
-
"</div>"
|
| 115 |
-
)
|
| 116 |
-
# Try to provide per-layer.csv if available for download
|
| 117 |
-
per_layer_csv = None
|
| 118 |
-
for log_fname in os.listdir(output_dir):
|
| 119 |
-
if log_fname.endswith("per-layer.csv"):
|
| 120 |
-
per_layer_csv = os.path.join("/tmp", log_fname)
|
| 121 |
-
shutil.copy(os.path.join(output_dir, log_fname), per_layer_csv)
|
| 122 |
-
break
|
| 123 |
-
return summary_html, None, per_layer_csv
|
| 124 |
-
|
| 125 |
-
model_filename = os.path.basename(model_file)
|
| 126 |
-
if model_filename:
|
| 127 |
-
vela_stdout = vela_stdout.replace(
|
| 128 |
-
"Network summary for",
|
| 129 |
-
f"Network summary for {model_filename} ("
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
summary_items = extract_summary_from_log(vela_stdout)
|
| 133 |
-
# Convert summary_items to dict for easy access
|
| 134 |
-
summary_dict = dict(summary_items) if summary_items else {}
|
| 135 |
-
|
| 136 |
-
# Build 4 cards for results
|
| 137 |
-
def clean_ops(val):
|
| 138 |
-
# Remove '=' and leading/trailing spaces
|
| 139 |
-
return val.lstrip("= ").strip() if isinstance(val, str) else val
|
| 140 |
-
|
| 141 |
-
summary_html = (
|
| 142 |
-
"<div class='sr110-results' style='background:#1e1e2f;border-radius:18px;padding:18px 18px 12px 18px;"
|
| 143 |
-
"max-width:430px;min-width:320px;width:100%;margin:auto;color:#eee;font-family:sans-serif;'>"
|
| 144 |
-
"<h3 class='sr110-title' style='margin-top:0;margin-bottom:12px;font-size:1.35em;color:#00b0ff;text-align:left;'>Estimated Results on SR110</h3>"
|
| 145 |
-
"<div style='display:flex;flex-wrap:wrap;gap:10px;justify-content:center;'>"
|
| 146 |
-
# Card 1: Accelerator
|
| 147 |
-
"<div class='sr110-card' style='flex:1 1 170px;min-width:170px;max-width:180px;background:#23233a;border-radius:12px;padding:10px 10px 8px 10px;'>"
|
| 148 |
-
"<div class='sr110-title' style='font-size:1em;font-weight:520;margin-bottom:6px;color:#00b0ff;'>🚀 Accelerator</div>"
|
| 149 |
-
f"<div style='margin-bottom:2px;'><span class='sr110-label' style='color:#ccc;'>Configuration:</span> <span class='sr110-value' style='color:#fff;font-weight:500'>{summary_dict.get('Accelerator configuration','-')}</span></div>"
|
| 150 |
-
f"<div><span class='sr110-label' style='color:#ccc;'>Accelerator clock:</span> <span class='sr110-value' style='color:#fff;font-weight:500'>{summary_dict.get('Accelerator clock','-')}</span></div>"
|
| 151 |
-
"</div>"
|
| 152 |
-
# Card 2: Memory Usage
|
| 153 |
-
"<div class='sr110-card' style='flex:1 1 170px;min-width:170px;max-width:180px;background:#23233a;border-radius:12px;padding:10px 10px 8px 10px;'>"
|
| 154 |
-
"<div class='sr110-title' style='font-size:1em;font-weight:520;margin-bottom:6px;color:#00b0ff;'>💾 Memory Usage</div>"
|
| 155 |
-
f"<div style='margin-bottom:2px;'><span class='sr110-label' style='color:#ccc;'>Total SRAM:</span> <span class='sr110-value' style='color:#fff;font-weight:500'>{summary_dict.get('Total SRAM used','-')}</span></div>"
|
| 156 |
-
f"<div><span class='sr110-label' style='color:#ccc;'>Total On-chip Flash:</span> <span class='sr110-value' style='color:#fff;font-weight:500'>{summary_dict.get('Total On-chip Flash used','-')}</span></div>"
|
| 157 |
-
"</div>"
|
| 158 |
-
# Card 3: Operator Distribution
|
| 159 |
-
"<div class='sr110-card' style='flex:1 1 170px;min-width:170px;max-width:180px;background:#23233a;border-radius:12px;padding:10px 10px 8px 10px;'>"
|
| 160 |
-
"<div class='sr110-title' style='font-size:1em;font-weight:520;margin-bottom:6px;color:#00b0ff;'>📈 Operator Distribution</div>"
|
| 161 |
-
f"<div style='margin-bottom:2px;'><span class='sr110-label' style='color:#ccc;'>CPU Operators:</span> <span class='sr110-value' style='color:#fff;font-weight:500'>{clean_ops(summary_dict.get('CPU operators','-'))}</span></div>"
|
| 162 |
-
f"<div><span class='sr110-label' style='color:#ccc;'>NPU Operators:</span> <span class='sr110-value' style='color:#fff;font-weight:500'>{clean_ops(summary_dict.get('NPU operators','-'))}</span></div>"
|
| 163 |
-
"</div>"
|
| 164 |
-
# Card 4: Performance
|
| 165 |
-
"<div class='sr110-card' style='flex:1 1 170px;min-width:170px;max-width:180px;background:#23233a;border-radius:12px;padding:10px 10px 8px 10px;'>"
|
| 166 |
-
"<div class='sr110-title' style='font-size:1em;font-weight:520;margin-bottom:6px;color:#00b0ff;'>⚡ Performance</div>"
|
| 167 |
-
f"<div><span class='sr110-label' style='color:#ccc;'>Inference time:</span> <span class='sr110-value' style='color:#fff;font-weight:500'>{summary_dict.get('Inference time','-')}</span></div>"
|
| 168 |
-
"</div>"
|
| 169 |
-
"</div></div>"
|
| 170 |
-
) if summary_items else "<div style='color:red'>Summary info not found in log.</div>"
|
| 171 |
-
|
| 172 |
-
for fname in os.listdir(output_dir):
|
| 173 |
-
if fname.endswith("vela.tflite"):
|
| 174 |
-
final_path = os.path.join("/tmp", fname)
|
| 175 |
-
shutil.copy(os.path.join(output_dir, fname), final_path)
|
| 176 |
-
# Find per-layer.csv file for logs
|
| 177 |
-
per_layer_csv = None
|
| 178 |
-
for log_fname in os.listdir(output_dir):
|
| 179 |
-
if log_fname.endswith("per-layer.csv"):
|
| 180 |
-
per_layer_csv = os.path.join("/tmp", log_fname)
|
| 181 |
-
shutil.copy(os.path.join(output_dir, log_fname), per_layer_csv)
|
| 182 |
-
break
|
| 183 |
-
return summary_html, final_path, per_layer_csv
|
| 184 |
-
|
| 185 |
-
# If no tflite, still try to return per-layer.csv if present
|
| 186 |
-
per_layer_csv = None
|
| 187 |
-
for log_fname in os.listdir(output_dir):
|
| 188 |
-
if log_fname.endswith("per-layer.csv"):
|
| 189 |
-
per_layer_csv = os.path.join("/tmp", log_fname)
|
| 190 |
-
shutil.copy(os.path.join(output_dir, log_fname), per_layer_csv)
|
| 191 |
-
break
|
| 192 |
-
return summary_html, None, per_layer_csv
|
| 193 |
-
finally:
|
| 194 |
-
shutil.rmtree(tmpdir)
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
# Run Vela analysis on startup and cache results
|
| 198 |
-
print("Running Vela analysis on MobileNetV2 model...")
|
| 199 |
-
try:
|
| 200 |
-
vela_html, compiled_model, per_layer_csv = run_vela(model_path)
|
| 201 |
-
except Exception as e:
|
| 202 |
-
vela_html = f"<div style='color:red'>Vela analysis failed: {str(e)}</div>"
|
| 203 |
-
|
| 204 |
def preprocess_image(image):
|
| 205 |
"""
|
| 206 |
Preprocess image for MobileNetV2 INT8 quantized model.
|
|
@@ -300,45 +134,6 @@ def load_example_image(example_path):
|
|
| 300 |
return None
|
| 301 |
return None
|
| 302 |
|
| 303 |
-
def compile_uploaded_model(model_file):
|
| 304 |
-
"""Compile uploaded model with Vela and return results"""
|
| 305 |
-
if model_file is None:
|
| 306 |
-
error_html = (
|
| 307 |
-
"<div class='sr110-results' style='background:#fff3f3;border-radius:14px;padding:24px 18px 18px 18px;"
|
| 308 |
-
"max-width:430px;min-width:320px;width:100%;margin:auto;color:#d32f2f;font-family:sans-serif;"
|
| 309 |
-
"font-size:1.1em;text-align:center;font-weight:600;'>"
|
| 310 |
-
"No model file uploaded."
|
| 311 |
-
"</div>"
|
| 312 |
-
)
|
| 313 |
-
return (
|
| 314 |
-
error_html,
|
| 315 |
-
gr.update(visible=False, value=None),
|
| 316 |
-
gr.update(visible=False, value=None)
|
| 317 |
-
)
|
| 318 |
-
|
| 319 |
-
try:
|
| 320 |
-
# Run Vela analysis on uploaded model
|
| 321 |
-
results_html, compiled_model_path, per_layer_csv = run_vela(model_file)
|
| 322 |
-
|
| 323 |
-
return (
|
| 324 |
-
results_html,
|
| 325 |
-
gr.update(visible=compiled_model_path is not None, value=compiled_model_path),
|
| 326 |
-
gr.update(visible=per_layer_csv is not None, value=per_layer_csv)
|
| 327 |
-
)
|
| 328 |
-
except Exception as e:
|
| 329 |
-
error_html = (
|
| 330 |
-
"<div class='sr110-results' style='background:#fff3f3;border-radius:14px;padding:24px 18px 18px 18px;"
|
| 331 |
-
"max-width:430px;min-width:320px;width:100%;margin:auto;color:#d32f2f;font-family:sans-serif;"
|
| 332 |
-
"font-size:1.1em;text-align:center;font-weight:600;'>"
|
| 333 |
-
f"Vela compilation failed: {str(e)}"
|
| 334 |
-
"</div>"
|
| 335 |
-
)
|
| 336 |
-
return (
|
| 337 |
-
error_html,
|
| 338 |
-
gr.update(visible=False, value=None),
|
| 339 |
-
gr.update(visible=False, value=None)
|
| 340 |
-
)
|
| 341 |
-
|
| 342 |
# Create Gradio interface
|
| 343 |
with gr.Blocks(
|
| 344 |
theme=gr.themes.Default(),
|
|
@@ -347,7 +142,7 @@ with gr.Blocks(
|
|
| 347 |
.gradio-container {
|
| 348 |
max-width: 1200px !important;
|
| 349 |
margin: auto !important;
|
| 350 |
-
background-color:
|
| 351 |
font-family: 'Inter', 'Segoe UI', -apple-system, sans-serif !important;
|
| 352 |
}
|
| 353 |
.main-header {
|
|
@@ -383,10 +178,7 @@ with gr.Blocks(
|
|
| 383 |
font-weight: 600 !important;
|
| 384 |
font-size: 1.1rem !important;
|
| 385 |
}
|
| 386 |
-
.card-header
|
| 387 |
-
div.card-header,
|
| 388 |
-
div.card-header span,
|
| 389 |
-
div.card-header * {
|
| 390 |
color: white !important;
|
| 391 |
}
|
| 392 |
.card-content {
|
|
@@ -469,36 +261,7 @@ with gr.Blocks(
|
|
| 469 |
.card-header * {
|
| 470 |
color: white !important;
|
| 471 |
}
|
| 472 |
-
|
| 473 |
-
.prose .sr110-results,
|
| 474 |
-
.prose .sr110-results *,
|
| 475 |
-
.prose .sr110-results h3,
|
| 476 |
-
.prose .sr110-results div,
|
| 477 |
-
.prose .sr110-results span,
|
| 478 |
-
.sr110-results,
|
| 479 |
-
.sr110-results *,
|
| 480 |
-
.sr110-results h3,
|
| 481 |
-
.sr110-results div,
|
| 482 |
-
.sr110-results span {
|
| 483 |
-
color: inherit !important;
|
| 484 |
-
}
|
| 485 |
-
/* Preserve original colors for dark theme cards with higher specificity */
|
| 486 |
-
.prose .sr110-results .sr110-card,
|
| 487 |
-
.sr110-results .sr110-card {
|
| 488 |
-
background: #23233a !important;
|
| 489 |
-
}
|
| 490 |
-
.prose .sr110-results .sr110-title,
|
| 491 |
-
.sr110-results .sr110-title {
|
| 492 |
-
color: #00b0ff !important;
|
| 493 |
-
}
|
| 494 |
-
.prose .sr110-results .sr110-label,
|
| 495 |
-
.sr110-results .sr110-label {
|
| 496 |
-
color: #ccc !important;
|
| 497 |
-
}
|
| 498 |
-
.prose .sr110-results .sr110-value,
|
| 499 |
-
.sr110-results .sr110-value {
|
| 500 |
-
color: #fff !important;
|
| 501 |
-
}
|
| 502 |
.example-grid {
|
| 503 |
display: grid !important;
|
| 504 |
grid-template-columns: 1fr !important;
|
|
@@ -579,11 +342,37 @@ with gr.Blocks(
|
|
| 579 |
with gr.Row():
|
| 580 |
example_car = gr.Button("Car", size="sm", elem_classes=["btn-example"])
|
| 581 |
example_food = gr.Button("Food", size="sm", elem_classes=["btn-example"])
|
| 582 |
-
|
| 583 |
|
| 584 |
with gr.Column(scale=1):
|
| 585 |
-
|
| 586 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 587 |
|
| 588 |
with gr.Group(elem_classes=["card"]):
|
| 589 |
gr.HTML('<div class="card-header"><span style="color: white; font-weight: 600;">Classification Results</span></div>')
|
|
@@ -608,7 +397,6 @@ with gr.Blocks(
|
|
| 608 |
example_car.click(lambda: load_example_image("Car"), outputs=input_image)
|
| 609 |
example_food.click(lambda: load_example_image("Food"), outputs=input_image)
|
| 610 |
|
| 611 |
-
|
| 612 |
# Auto-classify when image is uploaded
|
| 613 |
input_image.change(
|
| 614 |
fn=classify_image,
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import tensorflow as tf
|
| 7 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Download the TFLite model and labels from your Hugging Face repository
|
| 10 |
MODEL_REPO = "JahnaviBhansali/mobilenet-v2-ethos-u55"
|
| 11 |
MODEL_FILE = "mobilenet_v2_1.0_224_INT8.tflite" # Using original INT8 model for Gradio compatibility
|
| 12 |
VELA_MODEL_FILE = "mobilenet_v2_1.0_224_INT8_vela.tflite" # Vela-optimized model for Ethos-U55
|
| 13 |
LABELS_FILE = "labelmappings.txt"
|
|
|
|
| 14 |
|
| 15 |
print("Downloading model and labels from Hugging Face...")
|
| 16 |
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE)
|
|
|
|
| 35 |
# Force rebuild with modern design
|
| 36 |
print(f"Repository: {MODEL_REPO}")
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def preprocess_image(image):
|
| 39 |
"""
|
| 40 |
Preprocess image for MobileNetV2 INT8 quantized model.
|
|
|
|
| 134 |
return None
|
| 135 |
return None
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
# Create Gradio interface
|
| 138 |
with gr.Blocks(
|
| 139 |
theme=gr.themes.Default(),
|
|
|
|
| 142 |
.gradio-container {
|
| 143 |
max-width: 1200px !important;
|
| 144 |
margin: auto !important;
|
| 145 |
+
background-color: white !important;
|
| 146 |
font-family: 'Inter', 'Segoe UI', -apple-system, sans-serif !important;
|
| 147 |
}
|
| 148 |
.main-header {
|
|
|
|
| 178 |
font-weight: 600 !important;
|
| 179 |
font-size: 1.1rem !important;
|
| 180 |
}
|
| 181 |
+
.card-header * {
|
|
|
|
|
|
|
|
|
|
| 182 |
color: white !important;
|
| 183 |
}
|
| 184 |
.card-content {
|
|
|
|
| 261 |
.card-header * {
|
| 262 |
color: white !important;
|
| 263 |
}
|
| 264 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
.example-grid {
|
| 266 |
display: grid !important;
|
| 267 |
grid-template-columns: 1fr !important;
|
|
|
|
| 342 |
with gr.Row():
|
| 343 |
example_car = gr.Button("Car", size="sm", elem_classes=["btn-example"])
|
| 344 |
example_food = gr.Button("Food", size="sm", elem_classes=["btn-example"])
|
|
|
|
| 345 |
|
| 346 |
with gr.Column(scale=1):
|
| 347 |
+
gr.HTML("""
|
| 348 |
+
<div class="card">
|
| 349 |
+
<div class="card-header">
|
| 350 |
+
<span style="color: white; font-weight: 600;">Model Performance</span>
|
| 351 |
+
</div>
|
| 352 |
+
<div class="card-content">
|
| 353 |
+
<div class="stats-grid">
|
| 354 |
+
<div class="stat-item">
|
| 355 |
+
<div class="stat-label">Performance</div>
|
| 356 |
+
<div class="stat-value">
|
| 357 |
+
6M cycles/inference<br>
|
| 358 |
+
15.14ms @ 400MHz<br>
|
| 359 |
+
NPU Coverage: 100%<br>
|
| 360 |
+
ImageNet Top-1: 69.7%
|
| 361 |
+
</div>
|
| 362 |
+
</div>
|
| 363 |
+
<div class="stat-item">
|
| 364 |
+
<div class="stat-label">Memory Usage</div>
|
| 365 |
+
<div class="stat-value">
|
| 366 |
+
SRAM: 353.5 KiB<br>
|
| 367 |
+
Flash: 3.6 MiB<br>
|
| 368 |
+
Model: MobileNetV2<br>
|
| 369 |
+
Input: 224×224×3
|
| 370 |
+
</div>
|
| 371 |
+
</div>
|
| 372 |
+
</div>
|
| 373 |
+
</div>
|
| 374 |
+
</div>
|
| 375 |
+
""")
|
| 376 |
|
| 377 |
with gr.Group(elem_classes=["card"]):
|
| 378 |
gr.HTML('<div class="card-header"><span style="color: white; font-weight: 600;">Classification Results</span></div>')
|
|
|
|
| 397 |
example_car.click(lambda: load_example_image("Car"), outputs=input_image)
|
| 398 |
example_food.click(lambda: load_example_image("Food"), outputs=input_image)
|
| 399 |
|
|
|
|
| 400 |
# Auto-classify when image is uploaded
|
| 401 |
input_image.change(
|
| 402 |
fn=classify_image,
|