Spaces:
Sleeping
Sleeping
File size: 16,288 Bytes
ffed1a8 a43989d ffed1a8 95c6c66 ffed1a8 5825c65 ffed1a8 95c6c66 9cc7490 10ac0d4 d6f23b0 5825c65 ffed1a8 a43989d ffed1a8 a43989d 95c6c66 84d098f 5825c65 d6f23b0 5825c65 f9ea27d ffed1a8 d6f23b0 ffed1a8 d6f23b0 ffed1a8 10ac0d4 9cc7490 10ac0d4 ffed1a8 b20d33a ffed1a8 b20d33a ffed1a8 b20d33a ffed1a8 b20d33a ffed1a8 d6f23b0 84d098f 95c6c66 ffed1a8 d6f23b0 ffed1a8 95c6c66 84d098f f9ea27d ffed1a8 d6f23b0 95c6c66 d6f23b0 ffed1a8 95c6c66 ffed1a8 d6f23b0 ffed1a8 d6f23b0 ffed1a8 d6f23b0 ffed1a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import base64
import io
import json
import os
import uuid
from datetime import datetime
from pathlib import Path
import pandas as pd
import pytz
from datasets import load_dataset
import streamlit as st
from huggingface_hub import CommitScheduler, HfApi
# File paths as constants
PREDICTIONS_CSV = 'dis_predictions.csv'
USERS_JSON = 'leaders/users.json'
MATCHES_JSON = 'matches.json'
OUTCOMES_JSON = 'match_outcomes.json'
PLAYERS_JSON = 'players.json'
image_path = 'ipl_image.png'
PREDICTIONS_FOLDER = Path("predictions")
PREDICTIONS_FOLDER.mkdir(parents=True, exist_ok=True)
users_file = Path("leaders") / f"users.json"
USERS_FOLDER = users_file.parent
USERS_FOLDER.mkdir(parents=True, exist_ok=True)
# Initialize CommitScheduler
scheduler = CommitScheduler(
repo_id="DIS_IPL_Dataset",
repo_type="dataset",
folder_path=PREDICTIONS_FOLDER, # Local folder where predictions are saved temporarily
path_in_repo="predictions", # Path in dataset repo where predictions will be saved
every=10, # Push every 240 minutes (4 hours)
)
# Initialize CommitScheduler
scheduler = CommitScheduler(
repo_id="DIS_IPL_Dataset",
repo_type="dataset",
folder_path=USERS_FOLDER, # Local folder where users are saved temporarily
path_in_repo="leaders", # Path in dataset repo where predictions will be saved
every=5, # Push every 240 minutes (4 hours)
)
# Initialize CSV and JSON files if they don't exist
def initialize_files():
# Initialize predictions CSV
try:
pd.read_csv(PREDICTIONS_CSV)
except FileNotFoundError:
df = pd.DataFrame(columns=['user_name', 'match_id', 'predicted_winner', 'predicted_motm', 'bid_points'])
df.to_csv(PREDICTIONS_CSV, index=False)
def load_data(file_path):
"""
Load data from a JSON or CSV file.
Args:
file_path (str): The path to the file to load.
Returns:
pd.DataFrame or dict: The loaded data.
"""
try:
if file_path.endswith('.json'):
with open(file_path, 'r') as file:
return json.load(file)
elif file_path.endswith('.csv'):
return pd.read_csv(file_path)
except FileNotFoundError:
if file_path.endswith('.json'):
return {}
elif file_path.endswith('.csv'):
return pd.DataFrame()
def get_base64_of_image(path):
with open(path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
# Get today's date in IST to load today's match
def get_current_date_ist():
tz_IST = pytz.timezone('Asia/Kolkata')
datetime_ist = datetime.now(tz_IST)
return datetime_ist.strftime('%Y-%m-%d')
# Function to get matches for today
def get_today_matches():
today = get_current_date_ist()
matches = load_data(MATCHES_JSON)
today_matches = [match for match in matches if match['date'] == today]
return today_matches
# Function to check if prediction submission is allowed
def is_submission_allowed(match_id):
matches = load_data(MATCHES_JSON) # This loads matches correctly with IST times
for match in matches:
if match["match_id"] == match_id:
# Parse the match start time in IST
tz_IST = pytz.timezone('Asia/Kolkata')
match_datetime_str = f'{match["date"]} {match["time"]}'
# The match time string is like "2024-03-21 7:30 PM"
match_datetime = datetime.strptime(match_datetime_str, "%Y-%m-%d %I:%M %p")
match_datetime = tz_IST.localize(match_datetime) # Set the timezone to IST
# Get the current time in IST
current_datetime = datetime.now(tz_IST)
if current_datetime > match_datetime:
return False
else:
return True
return False # If match_id not found, default to False
def load_predictions(PREDICTIONS_CSV):
try:
return pd.read_csv(PREDICTIONS_CSV)
except FileNotFoundError:
return pd.DataFrame()
# Submit prediction function
def submit_prediction(
user_name,
match_id,
predicted_winner,
predicted_motm,
bid_points,
max_bid_points
):
# Validation for user selection
if user_name == "Select a user...":
st.warning("Please select a valid user.")
return
# Check if prediction submission is allowed for the match
if not is_submission_allowed(match_id):
st.error("Prediction submission time has passed. Predictions can't be submitted after match start.")
return
if bid_points > max_bid_points:
st.error(f"Your bid points exceed the 20% limit of your total points. Maximum allowed bid points: {max_bid_points}")
return
prediction_id = uuid.uuid4().hex
prediction_date = datetime.now().strftime('%Y-%m-%d')
prediction_data = {
'prediction_id': prediction_id,
'user_name': user_name,
'match_id': match_id,
'predicted_winner': predicted_winner,
'predicted_motm': predicted_motm,
'bid_points': bid_points,
'prediction_date': prediction_date # Include the prediction date
}
# Construct the filename to include match_id for easier retrieval
prediction_file_name = f"prediction_{match_id}_{prediction_id}.json"
prediction_file = PREDICTIONS_FOLDER / prediction_file_name
with scheduler.lock:
with prediction_file.open("a") as file:
file.write(json.dumps(prediction_data))
file.write("\n")
st.success("Prediction submitted successfully!")
def get_user_total_points(user_name):
users = load_data(USERS_JSON)
return users.get(user_name, 0)
# Define the new function
def calculate_max_bid_points(user_name):
total_points = get_user_total_points(user_name)
max_bid_points = int(total_points * 0.20) # 20% of total points
return max_bid_points
def load_users(USERS_JSON):
try:
with open(USERS_JSON, 'r') as file:
return json.load(file)
except FileNotFoundError:
return {}
def user_selection_and_prediction():
users = list(load_data(USERS_JSON))
user_name = st.selectbox("Select User", ["Select a user..."] + users)
max_bid_points = None
if user_name != "Select a user...":
max_bid_points = calculate_max_bid_points(user_name)
st.write(f"Maximum bid points you can submit: {max_bid_points}")
matches = get_today_matches()
if matches:
match_choice = st.selectbox("Select Today's Match", matches, format_func=lambda match: f"{match['teams'][0]} vs {match['teams'][1]}")
match_id = match_choice['match_id']
teams = match_choice['teams']
predicted_winner = st.selectbox("Predicted Winner", teams)
player_list = load_data(PLAYERS_JSON)
predicted_motm = ""
if predicted_winner in player_list:
players = player_list[predicted_winner]
predicted_motm = st.selectbox("Predicted Man of the Match", players)
bid_points = st.number_input("Bid Points", min_value=1, value=100, format="%d")
if st.button("Submit Prediction"):
submit_prediction(user_name, match_id, predicted_winner, predicted_motm, bid_points, max_bid_points)
else:
st.write("No matches are scheduled for today.")
def display_predictions():
if st.button("Show Predictions"):
all_predictions = []
# Check if the directory exists
if not os.path.exists(PREDICTIONS_FOLDER):
st.write("No predictions directory found.")
return
# List all JSON files in the directory
for filename in os.listdir(PREDICTIONS_FOLDER):
if filename.endswith('.json'):
file_path = os.path.join(PREDICTIONS_FOLDER, filename)
# Read each JSON file and append its contents to the list
with open(file_path, 'r') as file:
prediction = json.load(file)
all_predictions.append(prediction)
# Convert the list of dictionaries to a DataFrame
predictions_df = pd.DataFrame(all_predictions)
if not predictions_df.empty:
predictions_df['prediction_date'] = predictions_df.apply(lambda x: datetime.strptime(x['prediction_date'], '%Y-%m-%d'), axis=1)
# Filter for today's predictions
today_str = datetime.now().strftime('%Y-%m-%d')
todays_predictions = predictions_df[predictions_df['prediction_date'] == today_str]
# Remove the 'prediction_id' column if it exists
if 'prediction_id' in todays_predictions.columns:
todays_predictions = todays_predictions.drop(columns=['prediction_id', 'prediction_date'])
st.dataframe(todays_predictions, hide_index=True)
else:
st.write("No predictions for today's matches yet.")
def display_leaderboard():
if st.button("Show Leaderboard"):
try:
users = load_users(USERS_JSON)
leaderboard = sorted(users.items(), key=lambda x: x[1], reverse=True)
# Generate a list of dictionaries, each representing a row in the leaderboard
leaderboard_dicts = [{"Rank": rank+1, "User": user[0], "Points": user[1]}
for rank, user in enumerate(leaderboard)]
# Convert the list of dictionaries to a DataFrame
df_leaderboard = pd.DataFrame(leaderboard_dicts)
st.dataframe(df_leaderboard, hide_index=True)
except FileNotFoundError:
st.write("Leaderboard data not available.")
# Streamlit UI
encoded_image = get_base64_of_image(image_path)
custom_css = f"""
<style>
.header {{
font-size: 50px;
color: #FFD700; /* Gold */
text-shadow: -1px -1px 0 #000, 1px -1px 0 #000, -1px 1px 0 #000, 1px 1px 0 #000; /* Black text shadow */
text-align: center;
padding: 10px;
background-image: url('data:image/png;base64,{encoded_image}');
background-size: cover;
}}
</style>
"""
# Apply custom CSS
st.markdown(custom_css, unsafe_allow_html=True)
# Use the custom class in a div with your title
st.markdown('<div class="header">DIS IPL Match Predictions</div>', unsafe_allow_html=True)
st.write("π Predict, Compete, and Win π - Where Every Guess Counts! π")
user_guide_content = """
### π User Guide
#### Submitting Predictions
- **Match Selection**: Choose the match you want to predict from today's available matches.
- **Team and Player Prediction**: Select the team you predict will win and the "Man of the Match".
- **Bid Points**: Enter the number of points you wish to bid on your prediction. Remember, the maximum you can bid is capped at 20% of your total points.
#### Scoring System
- **Winning Team Prediction**: Correct predictions earn you 1000 points, while incorrect predictions deduct 200 points.
- **Man of the Match Prediction**: Correctly predicting the "Man of the Match" awards you 200 points. No penalty for incorrect guesses.
- **Bonus Points**: An additional 200 points bonus is awarded for getting both the team and "Man of the Match" predictions right.
#### Bid Point Constraints
- You cannot bid more than 20% of your current total points.
- Bid points will be doubled if your prediction is correct, and deducted if incorrect.
#### Rules for Submission
- Predictions must be submitted before the match starts.
- Only one prediction per match is allowed.
- Review your prediction carefully before submission, as it cannot be changed once submitted.
"""
# User Guide as an expander
with st.expander("User Guide π"):
st.markdown(user_guide_content)
with st.expander("Submit Prediction π"):
user_selection_and_prediction()
with st.expander("Predictions π"):
display_predictions()
with st.expander("Leaderboard π"):
display_leaderboard()
############################# Admin Panel ##################################
ADMIN_PASSPHRASE = "admin123"
def fetch_latest_predictions(match_id):
dataset = load_dataset("Jay-Rajput/DIS_IPL_Dataset", config_name="predictions")
predictions = dataset['train'].filter(lambda example: example['match_id'] == match_id)
return predictions
def save_match_outcomes(outcomes):
with open(OUTCOMES_JSON, 'w') as file:
json.dump(outcomes, file, indent=4)
def update_leaderboard_and_outcomes(match_id, winning_team, man_of_the_match):
# Fetch latest predictions from the dataset repo
predictions = fetch_latest_predictions(match_id)
outcomes = load_data(OUTCOMES_JSON) # Load existing match outcomes
# Load existing match outcomes and user data from the test split
dataset = load_dataset("Jay-Rajput/DIS_IPL_Dataset", config_name="leaders")
users = {item['user_name']: item for item in dataset['train']}
# Directly update or add the match outcome
outcome_exists = False
for outcome in outcomes:
if outcome['match_id'] == match_id:
outcome.update({"winning_team": winning_team, "man_of_the_match": man_of_the_match})
outcome_exists = True
break
if not outcome_exists:
outcomes.append({"match_id": match_id, "winning_team": winning_team, "man_of_the_match": man_of_the_match})
# Update user points based on prediction accuracy
for prediction in predictions:
user_name = prediction['user_name']
# Initialize user points if not present
if user_name not in users:
users[user_name] = {'user_name': user_name, 'points': 0}
# Update points based on prediction accuracy
if prediction['predicted_winner'] == winning_team:
users[user_name] += 1000
users[user_name] += prediction['bid_points']
if prediction['predicted_motm'] == man_of_the_match:
users[user_name] += 400 # Bonus for both correct predictions
else:
users[user_name] -= 200 + prediction['bid_points'] # Penalty for wrong team prediction
save_match_outcomes(outcomes)
users.save_to_disk(USERS_JSON)
with st.sidebar:
expander = st.expander("Admin Panel", expanded=False)
admin_pass = expander.text_input("Enter admin passphrase:", type="password", key="admin_pass")
if admin_pass == ADMIN_PASSPHRASE:
expander.success("Authenticated")
all_matches = load_data(MATCHES_JSON)
match_outcomes = load_data(OUTCOMES_JSON)
submitted_match_ids = [outcome["match_id"] for outcome in match_outcomes]
# Filter matches to those that do not have outcomes submitted yet
matches_without_outcomes = [match for match in all_matches if match["match_id"] not in submitted_match_ids]
# If matches are available, let the admin select one
if matches_without_outcomes:
match_selection = expander.selectbox("Select Match", matches_without_outcomes, format_func=lambda match: f"{match['teams'][0]} vs {match['teams'][1]}", key="match_selection")
selected_match_id = match_selection['match_id']
teams = match_selection['teams']
# Let admin select the winning team
winning_team = expander.selectbox("Winning Team", teams, key="winning_team")
# Fetch and display players for the selected winning team
player_list = load_data(PLAYERS_JSON)
if winning_team in player_list:
players = player_list[winning_team]
man_of_the_match = expander.selectbox("Man of the Match", players, key="man_of_the_match")
else:
players = []
man_of_the_match = expander.text_input("Man of the Match (Type if not listed)", key="man_of_the_match_fallback")
if expander.button("Submit Match Outcome", key="submit_outcome"):
update_leaderboard_and_outcomes(selected_match_id, winning_team, man_of_the_match)
expander.success("Match outcome submitted and leaderboard updated!")
else:
expander.write("No matches are available for today.")
else:
if admin_pass: # Show error only if something was typed
expander.error("Not authenticated")
|