File size: 16,288 Bytes
ffed1a8
 
 
 
 
 
a43989d
ffed1a8
 
95c6c66
ffed1a8
 
 
 
 
5825c65
ffed1a8
 
 
 
 
 
95c6c66
9cc7490
10ac0d4
d6f23b0
5825c65
 
 
ffed1a8
 
a43989d
ffed1a8
a43989d
95c6c66
84d098f
5825c65
 
 
 
 
 
d6f23b0
5825c65
f9ea27d
ffed1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6f23b0
ffed1a8
 
 
 
 
 
 
 
 
 
 
d6f23b0
 
 
 
ffed1a8
10ac0d4
9cc7490
10ac0d4
 
ffed1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b20d33a
 
ffed1a8
b20d33a
 
 
ffed1a8
b20d33a
 
 
ffed1a8
b20d33a
ffed1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6f23b0
84d098f
95c6c66
 
ffed1a8
 
 
 
 
 
 
 
d6f23b0
 
 
ffed1a8
95c6c66
84d098f
f9ea27d
ffed1a8
 
 
 
 
 
 
 
 
 
 
 
d6f23b0
 
95c6c66
 
 
d6f23b0
 
 
 
 
 
 
 
 
ffed1a8
 
95c6c66
ffed1a8
 
 
 
 
 
 
 
d6f23b0
 
 
 
ffed1a8
d6f23b0
 
 
ffed1a8
d6f23b0
 
ffed1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import base64
import io
import json
import os
import uuid
from datetime import datetime
from pathlib import Path
import pandas as pd
import pytz
from datasets import load_dataset
import streamlit as st
from huggingface_hub import CommitScheduler, HfApi

# File paths as constants
PREDICTIONS_CSV = 'dis_predictions.csv'
USERS_JSON = 'leaders/users.json'
MATCHES_JSON = 'matches.json'
OUTCOMES_JSON = 'match_outcomes.json'
PLAYERS_JSON = 'players.json'
image_path = 'ipl_image.png'


PREDICTIONS_FOLDER = Path("predictions")
PREDICTIONS_FOLDER.mkdir(parents=True, exist_ok=True)

users_file = Path("leaders") / f"users.json"
USERS_FOLDER = users_file.parent
USERS_FOLDER.mkdir(parents=True, exist_ok=True)

# Initialize CommitScheduler
scheduler = CommitScheduler(
    repo_id="DIS_IPL_Dataset",
    repo_type="dataset",
    folder_path=PREDICTIONS_FOLDER,  # Local folder where predictions are saved temporarily
    path_in_repo="predictions",  # Path in dataset repo where predictions will be saved
    every=10,  # Push every 240 minutes (4 hours)
)

# Initialize CommitScheduler
scheduler = CommitScheduler(
    repo_id="DIS_IPL_Dataset",
    repo_type="dataset",
    folder_path=USERS_FOLDER,  # Local folder where users are saved temporarily
    path_in_repo="leaders",  # Path in dataset repo where predictions will be saved
    every=5,  # Push every 240 minutes (4 hours)
)


# Initialize CSV and JSON files if they don't exist
def initialize_files():
    # Initialize predictions CSV
    try:
        pd.read_csv(PREDICTIONS_CSV)
    except FileNotFoundError:
        df = pd.DataFrame(columns=['user_name', 'match_id', 'predicted_winner', 'predicted_motm', 'bid_points'])
        df.to_csv(PREDICTIONS_CSV, index=False)


def load_data(file_path):
    """
    Load data from a JSON or CSV file.
    
    Args:
    file_path (str): The path to the file to load.
    
    Returns:
    pd.DataFrame or dict: The loaded data.
    """
    try:
        if file_path.endswith('.json'):
            with open(file_path, 'r') as file:
                return json.load(file)
        elif file_path.endswith('.csv'):
            return pd.read_csv(file_path)
    except FileNotFoundError:
        if file_path.endswith('.json'):
            return {}
        elif file_path.endswith('.csv'):
            return pd.DataFrame()


def get_base64_of_image(path):
    with open(path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode()


# Get today's date in IST to load today's match
def get_current_date_ist():
    tz_IST = pytz.timezone('Asia/Kolkata')
    datetime_ist = datetime.now(tz_IST)
    return datetime_ist.strftime('%Y-%m-%d')


# Function to get matches for today
def get_today_matches():
    today = get_current_date_ist()
    matches = load_data(MATCHES_JSON)
    today_matches = [match for match in matches if match['date'] == today]
    return today_matches


# Function to check if prediction submission is allowed
def is_submission_allowed(match_id):
    matches = load_data(MATCHES_JSON)  # This loads matches correctly with IST times

    for match in matches:
        if match["match_id"] == match_id:
            # Parse the match start time in IST
            tz_IST = pytz.timezone('Asia/Kolkata')
            match_datetime_str = f'{match["date"]} {match["time"]}'
            # The match time string is like "2024-03-21 7:30 PM"
            match_datetime = datetime.strptime(match_datetime_str, "%Y-%m-%d %I:%M %p")
            match_datetime = tz_IST.localize(match_datetime)  # Set the timezone to IST

            # Get the current time in IST
            current_datetime = datetime.now(tz_IST)

            if current_datetime > match_datetime:
                return False
            else:
                return True
    return False  # If match_id not found, default to False


def load_predictions(PREDICTIONS_CSV):
    try:
        return pd.read_csv(PREDICTIONS_CSV)
    except FileNotFoundError:
        return pd.DataFrame()


# Submit prediction function
def submit_prediction(
        user_name,
        match_id,
        predicted_winner,
        predicted_motm,
        bid_points,
        max_bid_points
        ):

    # Validation for user selection
    if user_name == "Select a user...":
        st.warning("Please select a valid user.")
        return

    # Check if prediction submission is allowed for the match
    if not is_submission_allowed(match_id):
        st.error("Prediction submission time has passed. Predictions can't be submitted after match start.")
        return

    if bid_points > max_bid_points:
        st.error(f"Your bid points exceed the 20% limit of your total points. Maximum allowed bid points: {max_bid_points}")
        return

    prediction_id = uuid.uuid4().hex
    prediction_date = datetime.now().strftime('%Y-%m-%d')

    prediction_data = {
        'prediction_id': prediction_id,
        'user_name': user_name,
        'match_id': match_id,
        'predicted_winner': predicted_winner,
        'predicted_motm': predicted_motm,
        'bid_points': bid_points,
        'prediction_date': prediction_date  # Include the prediction date
    }
    
    # Construct the filename to include match_id for easier retrieval
    prediction_file_name = f"prediction_{match_id}_{prediction_id}.json"
    prediction_file = PREDICTIONS_FOLDER / prediction_file_name

    with scheduler.lock:
        with prediction_file.open("a") as file:
            file.write(json.dumps(prediction_data))
            file.write("\n")

    st.success("Prediction submitted successfully!")


def get_user_total_points(user_name):
    users = load_data(USERS_JSON)
    return users.get(user_name, 0)


# Define the new function
def calculate_max_bid_points(user_name):
    total_points = get_user_total_points(user_name)
    max_bid_points = int(total_points * 0.20)  # 20% of total points
    return max_bid_points


def load_users(USERS_JSON):
    try:
        with open(USERS_JSON, 'r') as file:
            return json.load(file)
    except FileNotFoundError:
        return {}


def user_selection_and_prediction():
    users = list(load_data(USERS_JSON))
    user_name = st.selectbox("Select User", ["Select a user..."] + users)

    max_bid_points = None
    if user_name != "Select a user...":
        max_bid_points = calculate_max_bid_points(user_name)
        st.write(f"Maximum bid points you can submit: {max_bid_points}")

    matches = get_today_matches()
    if matches:
        match_choice = st.selectbox("Select Today's Match", matches, format_func=lambda match: f"{match['teams'][0]} vs {match['teams'][1]}")
        match_id = match_choice['match_id']
        teams = match_choice['teams']

        predicted_winner = st.selectbox("Predicted Winner", teams)

        player_list = load_data(PLAYERS_JSON)
        predicted_motm = ""
        if predicted_winner in player_list:
            players = player_list[predicted_winner]
            predicted_motm = st.selectbox("Predicted Man of the Match", players)

        bid_points = st.number_input("Bid Points", min_value=1, value=100, format="%d")

        if st.button("Submit Prediction"):
            submit_prediction(user_name, match_id, predicted_winner, predicted_motm, bid_points, max_bid_points)
    else:
        st.write("No matches are scheduled for today.")


def display_predictions():
    if st.button("Show Predictions"):
        all_predictions = []

        # Check if the directory exists
        if not os.path.exists(PREDICTIONS_FOLDER):
            st.write("No predictions directory found.")
            return

        # List all JSON files in the directory
        for filename in os.listdir(PREDICTIONS_FOLDER):
            if filename.endswith('.json'):
                file_path = os.path.join(PREDICTIONS_FOLDER, filename)
                # Read each JSON file and append its contents to the list
                with open(file_path, 'r') as file:
                    prediction = json.load(file)
                    all_predictions.append(prediction)

        # Convert the list of dictionaries to a DataFrame
        predictions_df = pd.DataFrame(all_predictions)

        if not predictions_df.empty:
            predictions_df['prediction_date'] = predictions_df.apply(lambda x: datetime.strptime(x['prediction_date'], '%Y-%m-%d'), axis=1)

            # Filter for today's predictions
            today_str = datetime.now().strftime('%Y-%m-%d')
            todays_predictions = predictions_df[predictions_df['prediction_date'] == today_str]

            # Remove the 'prediction_id' column if it exists
            if 'prediction_id' in todays_predictions.columns:
                todays_predictions = todays_predictions.drop(columns=['prediction_id', 'prediction_date'])

        
            st.dataframe(todays_predictions, hide_index=True)
        else:
            st.write("No predictions for today's matches yet.")


def display_leaderboard():
    if st.button("Show Leaderboard"):
        try:
            users = load_users(USERS_JSON)
            leaderboard = sorted(users.items(), key=lambda x: x[1], reverse=True)
            
            # Generate a list of dictionaries, each representing a row in the leaderboard
            leaderboard_dicts = [{"Rank": rank+1, "User": user[0], "Points": user[1]} 
                                 for rank, user in enumerate(leaderboard)]
            
            # Convert the list of dictionaries to a DataFrame
            df_leaderboard = pd.DataFrame(leaderboard_dicts)
            
            st.dataframe(df_leaderboard, hide_index=True)
        except FileNotFoundError:
            st.write("Leaderboard data not available.")


# Streamlit UI
encoded_image = get_base64_of_image(image_path)
custom_css = f"""
<style>
.header {{
    font-size: 50px;
    color: #FFD700; /* Gold */
    text-shadow: -1px -1px 0 #000, 1px -1px 0 #000, -1px 1px 0 #000, 1px 1px 0 #000; /* Black text shadow */
    text-align: center;
    padding: 10px;
    background-image: url('data:image/png;base64,{encoded_image}');
    background-size: cover;
}}
</style>
"""
# Apply custom CSS
st.markdown(custom_css, unsafe_allow_html=True)
# Use the custom class in a div with your title
st.markdown('<div class="header">DIS IPL Match Predictions</div>', unsafe_allow_html=True)

st.write("πŸ† Predict, Compete, and Win 🏏 - Where Every Guess Counts! πŸ†")

user_guide_content = """
### πŸ“˜ User Guide

#### Submitting Predictions
- **Match Selection**: Choose the match you want to predict from today's available matches.
- **Team and Player Prediction**: Select the team you predict will win and the "Man of the Match".
- **Bid Points**: Enter the number of points you wish to bid on your prediction. Remember, the maximum you can bid is capped at 20% of your total points.

#### Scoring System
- **Winning Team Prediction**: Correct predictions earn you 1000 points, while incorrect predictions deduct 200 points.
- **Man of the Match Prediction**: Correctly predicting the "Man of the Match" awards you 200 points. No penalty for incorrect guesses.
- **Bonus Points**: An additional 200 points bonus is awarded for getting both the team and "Man of the Match" predictions right.

#### Bid Point Constraints
- You cannot bid more than 20% of your current total points.
- Bid points will be doubled if your prediction is correct, and deducted if incorrect.

#### Rules for Submission
- Predictions must be submitted before the match starts.
- Only one prediction per match is allowed.
- Review your prediction carefully before submission, as it cannot be changed once submitted.
"""

# User Guide as an expander
with st.expander("User Guide πŸ“˜"):
    st.markdown(user_guide_content)

with st.expander("Submit Prediction πŸ“"):
    user_selection_and_prediction()

with st.expander("Predictions πŸ”"):
    display_predictions()

with st.expander("Leaderboard πŸ†"):
    display_leaderboard()


############################# Admin Panel ##################################
ADMIN_PASSPHRASE = "admin123"

def fetch_latest_predictions(match_id):
    dataset = load_dataset("Jay-Rajput/DIS_IPL_Dataset", config_name="predictions")
    predictions = dataset['train'].filter(lambda example: example['match_id'] == match_id)
    return predictions


def save_match_outcomes(outcomes):
    with open(OUTCOMES_JSON, 'w') as file:
        json.dump(outcomes, file, indent=4)


def update_leaderboard_and_outcomes(match_id, winning_team, man_of_the_match):
    # Fetch latest predictions from the dataset repo
    predictions = fetch_latest_predictions(match_id)
    
    outcomes = load_data(OUTCOMES_JSON)  # Load existing match outcomes
    # Load existing match outcomes and user data from the test split
    dataset = load_dataset("Jay-Rajput/DIS_IPL_Dataset", config_name="leaders")
    users = {item['user_name']: item for item in dataset['train']}

    # Directly update or add the match outcome
    outcome_exists = False
    for outcome in outcomes:
        if outcome['match_id'] == match_id:
            outcome.update({"winning_team": winning_team, "man_of_the_match": man_of_the_match})
            outcome_exists = True
            break
    if not outcome_exists:
        outcomes.append({"match_id": match_id, "winning_team": winning_team, "man_of_the_match": man_of_the_match})

    # Update user points based on prediction accuracy
    for prediction in predictions:
        user_name = prediction['user_name']
        # Initialize user points if not present
        if user_name not in users:
            users[user_name] = {'user_name': user_name, 'points': 0}

        # Update points based on prediction accuracy
        if prediction['predicted_winner'] == winning_team:
            users[user_name] += 1000
            users[user_name] += prediction['bid_points'] 
            if prediction['predicted_motm'] == man_of_the_match:
                users[user_name] += 400  # Bonus for both correct predictions
        else:
            users[user_name] -= 200 + prediction['bid_points']  # Penalty for wrong team prediction

    save_match_outcomes(outcomes)
    users.save_to_disk(USERS_JSON)


with st.sidebar:
    expander = st.expander("Admin Panel", expanded=False)
    admin_pass = expander.text_input("Enter admin passphrase:", type="password", key="admin_pass")

    if admin_pass == ADMIN_PASSPHRASE:
        expander.success("Authenticated")
        
        all_matches = load_data(MATCHES_JSON)
        match_outcomes = load_data(OUTCOMES_JSON)
        submitted_match_ids = [outcome["match_id"] for outcome in match_outcomes]

        # Filter matches to those that do not have outcomes submitted yet
        matches_without_outcomes = [match for match in all_matches if match["match_id"] not in submitted_match_ids]
        
        # If matches are available, let the admin select one
        if matches_without_outcomes:
            match_selection = expander.selectbox("Select Match", matches_without_outcomes, format_func=lambda match: f"{match['teams'][0]} vs {match['teams'][1]}", key="match_selection")
            selected_match_id = match_selection['match_id']
            teams = match_selection['teams']

            # Let admin select the winning team
            winning_team = expander.selectbox("Winning Team", teams, key="winning_team")

            # Fetch and display players for the selected winning team
            player_list = load_data(PLAYERS_JSON)
            if winning_team in player_list:
                players = player_list[winning_team]
                man_of_the_match = expander.selectbox("Man of the Match", players, key="man_of_the_match")
            else:
                players = []
                man_of_the_match = expander.text_input("Man of the Match (Type if not listed)", key="man_of_the_match_fallback")

            if expander.button("Submit Match Outcome", key="submit_outcome"):
                update_leaderboard_and_outcomes(selected_match_id, winning_team, man_of_the_match)
                expander.success("Match outcome submitted and leaderboard updated!")
        else:
            expander.write("No matches are available for today.")
    else:
        if admin_pass:  # Show error only if something was typed
            expander.error("Not authenticated")