Spaces:
Runtime error
Runtime error
| import subprocess | |
| subprocess.run("pip install opencv-python os gc torch torchaudio torchvision gfpgan basicsr realesrgan") | |
| import os | |
| import cv2 | |
| import time | |
| import gc | |
| import torch | |
| from gfpgan import GFPGANer | |
| from basicsr.archs.rrdbnet_arch import RRDBNet | |
| from basicsr.utils.download_util import load_file_from_url | |
| from realesrgan import RealESRGANer | |
| # === GPU MEMORY MONITORING === | |
| def print_simple_gpu_memory(): | |
| allocated = torch.cuda.memory_allocated(0) / 1024**3 | |
| reserved = torch.cuda.memory_reserved(0) / 1024**3 | |
| print(f"[GPU Memory] Allocated: {allocated:.2f} GB | Reserved: {reserved:.2f} GB") | |
| # === GFPGAN STEP === | |
| def run_gfpgan(image_path, output_path, model_path='GFPGAN\GFPGAN\experiments\pretrained_models\GFPGANv1.4.pth'): | |
| gfpganer = GFPGANer( | |
| model_path=model_path, | |
| upscale=2, | |
| arch='clean', | |
| channel_multiplier=2, | |
| bg_upsampler=None | |
| ) | |
| img = cv2.imread(image_path) | |
| if img is None: | |
| raise FileNotFoundError(f"Input image not found: {image_path}") | |
| _, _, restored_img = gfpganer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) | |
| cv2.imwrite(output_path, restored_img) | |
| print(f"[+] GFPGAN output saved: {output_path}") | |
| return output_path | |
| # === RealESRGAN STEP === | |
| def run_realesrgan(input_path, output_path, model_name='RealESRGAN_x4plus', outscale=4, gpu_id=None): | |
| if model_name == 'RealESRGAN_x4plus': | |
| model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) | |
| netscale = 4 | |
| file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'] | |
| else: | |
| raise NotImplementedError(f'Model {model_name} not implemented') | |
| model_path = os.path.join('weights', model_name + '.pth') | |
| if not os.path.isfile(model_path): | |
| ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
| for url in file_url: | |
| model_path = load_file_from_url(url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None) | |
| upsampler = RealESRGANer( | |
| scale=netscale, | |
| model_path=model_path, | |
| dni_weight=None, | |
| model=model, | |
| tile=512, # <<< IMPORTANT for 4 GB VRAM! | |
| tile_pad=10, | |
| pre_pad=0, | |
| half=False, | |
| gpu_id=gpu_id | |
| ) | |
| img = cv2.imread(input_path, cv2.IMREAD_UNCHANGED) | |
| if img is None: | |
| raise FileNotFoundError(f'Input image not found: {input_path}') | |
| output, _ = upsampler.enhance(img, outscale=outscale) | |
| output_dir = os.path.dirname(output_path) | |
| if output_dir and not os.path.exists(output_dir): | |
| os.makedirs(output_dir, exist_ok=True) | |
| cv2.imwrite(output_path, output) | |
| print(f"[+] RealESRGAN output saved: {output_path}") | |
| return output_path | |
| # === Combined Workflow === | |
| def combined_enhance(input_img_path, rescale_factor, output_dir): | |
| start_time = time.perf_counter() | |
| base_name = os.path.splitext(os.path.basename(input_img_path))[0] | |
| # Step 1: GFPGAN enhancement | |
| gfpgan_out = os.path.join(output_dir, f"{base_name}_GFPGAN.png") | |
| run_gfpgan(input_img_path, gfpgan_out) | |
| print("[GPU Memory after GFPGAN]") | |
| print_simple_gpu_memory() | |
| # Free memory before loading RealESRGAN | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| print("[*] Cleared GPU cache before RealESRGAN") | |
| # Step 2: RealESRGAN enhancement using GFPGAN result | |
| realesrgan_out = os.path.join(output_dir, f"{base_name}_GFPGAN_RealESRGAN_combined.png") | |
| run_realesrgan(gfpgan_out, realesrgan_out, outscale=rescale_factor) | |
| print("[GPU Memory after RealESRGAN]") | |
| print_simple_gpu_memory() | |
| print(f"[***] Final combined image saved at: {realesrgan_out}") | |
| # Get resolution and file size info | |
| img = cv2.imread(realesrgan_out) | |
| height, width = img.shape[:2] | |
| file_size_bytes = os.path.getsize(realesrgan_out) | |
| file_size_mb = file_size_bytes / (1024 * 1024) | |
| end_time = time.perf_counter() | |
| elapsed = end_time - start_time | |
| mins, secs = divmod(elapsed, 60) | |
| hours, mins = divmod(mins, 60) | |
| print(f"[***] Image resolution: {width}x{height}, file size: {file_size_mb:.2f} MB") | |
| print(f"[***] Total processing time: {int(hours):02d}h:{int(mins):02d}m:{secs:05.2f}s") | |
| return realesrgan_out | |
| import gradio as gr | |
| import os | |
| # Your core functions like combined_enhance must be defined/imported before this | |
| def wrapped_combined_enhance(image, scale_factor): | |
| temp_input_path = "temp_input.png" | |
| temp_output_dir = "output" | |
| os.makedirs(temp_output_dir, exist_ok=True) | |
| image.save(temp_input_path) | |
| try: | |
| final_path = combined_enhance(temp_input_path, int(scale_factor), temp_output_dir) | |
| return final_path, "Enhancement succeeded!" | |
| except Exception as e: | |
| return None, f"[ERROR]: {str(e)}" | |
| with gr.Blocks(title="AI Face Enhancer (GFPGAN + RealESRGAN)") as demo: | |
| gr.Markdown("# ✨ Face Enhancer Pro") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_img = gr.Image(type="pil", label="Upload Image") | |
| scale_slider= gr.Slider(1, 4, value=2, step=1, label="Upscale Factor") | |
| enhance_btn = gr.Button("Enhance") | |
| status_box = gr.Textbox(label="Status / Logs", lines=6, interactive=False) | |
| with gr.Column(): | |
| output_img = gr.Image(label="Enhanced Output") | |
| def ui_callback(image, scale): | |
| if image is None: | |
| return None, "⚠️ Please upload an image first." | |
| out_path, status = wrapped_combined_enhance(image, scale) | |
| # return filepath (or None) and status string | |
| return out_path, status | |
| enhance_btn.click( | |
| fn=ui_callback, | |
| inputs=[input_img, scale_slider], | |
| outputs=[output_img, status_box] | |
| ) | |
| demo.launch() |