KristofGaming39's picture
Update app.py
f3d8556 verified
import subprocess
subprocess.run("pip install opencv-python os gc torch torchaudio torchvision gfpgan basicsr realesrgan")
import os
import cv2
import time
import gc
import torch
from gfpgan import GFPGANer
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
# === GPU MEMORY MONITORING ===
def print_simple_gpu_memory():
allocated = torch.cuda.memory_allocated(0) / 1024**3
reserved = torch.cuda.memory_reserved(0) / 1024**3
print(f"[GPU Memory] Allocated: {allocated:.2f} GB | Reserved: {reserved:.2f} GB")
# === GFPGAN STEP ===
def run_gfpgan(image_path, output_path, model_path='GFPGAN\GFPGAN\experiments\pretrained_models\GFPGANv1.4.pth'):
gfpganer = GFPGANer(
model_path=model_path,
upscale=2,
arch='clean',
channel_multiplier=2,
bg_upsampler=None
)
img = cv2.imread(image_path)
if img is None:
raise FileNotFoundError(f"Input image not found: {image_path}")
_, _, restored_img = gfpganer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
cv2.imwrite(output_path, restored_img)
print(f"[+] GFPGAN output saved: {output_path}")
return output_path
# === RealESRGAN STEP ===
def run_realesrgan(input_path, output_path, model_name='RealESRGAN_x4plus', outscale=4, gpu_id=None):
if model_name == 'RealESRGAN_x4plus':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
else:
raise NotImplementedError(f'Model {model_name} not implemented')
model_path = os.path.join('weights', model_name + '.pth')
if not os.path.isfile(model_path):
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
for url in file_url:
model_path = load_file_from_url(url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=None,
model=model,
tile=512, # <<< IMPORTANT for 4 GB VRAM!
tile_pad=10,
pre_pad=0,
half=False,
gpu_id=gpu_id
)
img = cv2.imread(input_path, cv2.IMREAD_UNCHANGED)
if img is None:
raise FileNotFoundError(f'Input image not found: {input_path}')
output, _ = upsampler.enhance(img, outscale=outscale)
output_dir = os.path.dirname(output_path)
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
cv2.imwrite(output_path, output)
print(f"[+] RealESRGAN output saved: {output_path}")
return output_path
# === Combined Workflow ===
def combined_enhance(input_img_path, rescale_factor, output_dir):
start_time = time.perf_counter()
base_name = os.path.splitext(os.path.basename(input_img_path))[0]
# Step 1: GFPGAN enhancement
gfpgan_out = os.path.join(output_dir, f"{base_name}_GFPGAN.png")
run_gfpgan(input_img_path, gfpgan_out)
print("[GPU Memory after GFPGAN]")
print_simple_gpu_memory()
# Free memory before loading RealESRGAN
gc.collect()
torch.cuda.empty_cache()
print("[*] Cleared GPU cache before RealESRGAN")
# Step 2: RealESRGAN enhancement using GFPGAN result
realesrgan_out = os.path.join(output_dir, f"{base_name}_GFPGAN_RealESRGAN_combined.png")
run_realesrgan(gfpgan_out, realesrgan_out, outscale=rescale_factor)
print("[GPU Memory after RealESRGAN]")
print_simple_gpu_memory()
print(f"[***] Final combined image saved at: {realesrgan_out}")
# Get resolution and file size info
img = cv2.imread(realesrgan_out)
height, width = img.shape[:2]
file_size_bytes = os.path.getsize(realesrgan_out)
file_size_mb = file_size_bytes / (1024 * 1024)
end_time = time.perf_counter()
elapsed = end_time - start_time
mins, secs = divmod(elapsed, 60)
hours, mins = divmod(mins, 60)
print(f"[***] Image resolution: {width}x{height}, file size: {file_size_mb:.2f} MB")
print(f"[***] Total processing time: {int(hours):02d}h:{int(mins):02d}m:{secs:05.2f}s")
return realesrgan_out
import gradio as gr
import os
# Your core functions like combined_enhance must be defined/imported before this
def wrapped_combined_enhance(image, scale_factor):
temp_input_path = "temp_input.png"
temp_output_dir = "output"
os.makedirs(temp_output_dir, exist_ok=True)
image.save(temp_input_path)
try:
final_path = combined_enhance(temp_input_path, int(scale_factor), temp_output_dir)
return final_path, "Enhancement succeeded!"
except Exception as e:
return None, f"[ERROR]: {str(e)}"
with gr.Blocks(title="AI Face Enhancer (GFPGAN + RealESRGAN)") as demo:
gr.Markdown("# ✨ Face Enhancer Pro")
with gr.Row():
with gr.Column():
input_img = gr.Image(type="pil", label="Upload Image")
scale_slider= gr.Slider(1, 4, value=2, step=1, label="Upscale Factor")
enhance_btn = gr.Button("Enhance")
status_box = gr.Textbox(label="Status / Logs", lines=6, interactive=False)
with gr.Column():
output_img = gr.Image(label="Enhanced Output")
def ui_callback(image, scale):
if image is None:
return None, "⚠️ Please upload an image first."
out_path, status = wrapped_combined_enhance(image, scale)
# return filepath (or None) and status string
return out_path, status
enhance_btn.click(
fn=ui_callback,
inputs=[input_img, scale_slider],
outputs=[output_img, status_box]
)
demo.launch()