Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import time
|
| 4 |
+
import gc
|
| 5 |
+
import torch
|
| 6 |
+
from gfpgan import GFPGANer
|
| 7 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 8 |
+
from basicsr.utils.download_util import load_file_from_url
|
| 9 |
+
from realesrgan import RealESRGANer
|
| 10 |
+
|
| 11 |
+
# === GPU MEMORY MONITORING ===
|
| 12 |
+
def print_simple_gpu_memory():
|
| 13 |
+
allocated = torch.cuda.memory_allocated(0) / 1024**3
|
| 14 |
+
reserved = torch.cuda.memory_reserved(0) / 1024**3
|
| 15 |
+
print(f"[GPU Memory] Allocated: {allocated:.2f} GB | Reserved: {reserved:.2f} GB")
|
| 16 |
+
|
| 17 |
+
# === GFPGAN STEP ===
|
| 18 |
+
def run_gfpgan(image_path, output_path, model_path='GFPGAN\GFPGAN\experiments\pretrained_models\GFPGANv1.4.pth'):
|
| 19 |
+
gfpganer = GFPGANer(
|
| 20 |
+
model_path=model_path,
|
| 21 |
+
upscale=2,
|
| 22 |
+
arch='clean',
|
| 23 |
+
channel_multiplier=2,
|
| 24 |
+
bg_upsampler=None
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
img = cv2.imread(image_path)
|
| 28 |
+
if img is None:
|
| 29 |
+
raise FileNotFoundError(f"Input image not found: {image_path}")
|
| 30 |
+
|
| 31 |
+
_, _, restored_img = gfpganer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
| 32 |
+
cv2.imwrite(output_path, restored_img)
|
| 33 |
+
print(f"[+] GFPGAN output saved: {output_path}")
|
| 34 |
+
return output_path
|
| 35 |
+
|
| 36 |
+
# === RealESRGAN STEP ===
|
| 37 |
+
def run_realesrgan(input_path, output_path, model_name='RealESRGAN_x4plus', outscale=4, gpu_id=None):
|
| 38 |
+
if model_name == 'RealESRGAN_x4plus':
|
| 39 |
+
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
| 40 |
+
netscale = 4
|
| 41 |
+
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
|
| 42 |
+
else:
|
| 43 |
+
raise NotImplementedError(f'Model {model_name} not implemented')
|
| 44 |
+
|
| 45 |
+
model_path = os.path.join('weights', model_name + '.pth')
|
| 46 |
+
if not os.path.isfile(model_path):
|
| 47 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 48 |
+
for url in file_url:
|
| 49 |
+
model_path = load_file_from_url(url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
|
| 50 |
+
|
| 51 |
+
upsampler = RealESRGANer(
|
| 52 |
+
scale=netscale,
|
| 53 |
+
model_path=model_path,
|
| 54 |
+
dni_weight=None,
|
| 55 |
+
model=model,
|
| 56 |
+
tile=512, # <<< IMPORTANT for 4 GB VRAM!
|
| 57 |
+
tile_pad=10,
|
| 58 |
+
pre_pad=0,
|
| 59 |
+
half=False,
|
| 60 |
+
gpu_id=gpu_id
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
img = cv2.imread(input_path, cv2.IMREAD_UNCHANGED)
|
| 64 |
+
if img is None:
|
| 65 |
+
raise FileNotFoundError(f'Input image not found: {input_path}')
|
| 66 |
+
|
| 67 |
+
output, _ = upsampler.enhance(img, outscale=outscale)
|
| 68 |
+
|
| 69 |
+
output_dir = os.path.dirname(output_path)
|
| 70 |
+
if output_dir and not os.path.exists(output_dir):
|
| 71 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 72 |
+
|
| 73 |
+
cv2.imwrite(output_path, output)
|
| 74 |
+
print(f"[+] RealESRGAN output saved: {output_path}")
|
| 75 |
+
return output_path
|
| 76 |
+
|
| 77 |
+
# === Combined Workflow ===
|
| 78 |
+
def combined_enhance(input_img_path, rescale_factor, output_dir):
|
| 79 |
+
start_time = time.perf_counter()
|
| 80 |
+
|
| 81 |
+
base_name = os.path.splitext(os.path.basename(input_img_path))[0]
|
| 82 |
+
|
| 83 |
+
# Step 1: GFPGAN enhancement
|
| 84 |
+
gfpgan_out = os.path.join(output_dir, f"{base_name}_GFPGAN.png")
|
| 85 |
+
run_gfpgan(input_img_path, gfpgan_out)
|
| 86 |
+
|
| 87 |
+
print("[GPU Memory after GFPGAN]")
|
| 88 |
+
print_simple_gpu_memory()
|
| 89 |
+
|
| 90 |
+
# Free memory before loading RealESRGAN
|
| 91 |
+
gc.collect()
|
| 92 |
+
torch.cuda.empty_cache()
|
| 93 |
+
print("[*] Cleared GPU cache before RealESRGAN")
|
| 94 |
+
|
| 95 |
+
# Step 2: RealESRGAN enhancement using GFPGAN result
|
| 96 |
+
realesrgan_out = os.path.join(output_dir, f"{base_name}_GFPGAN_RealESRGAN_combined.png")
|
| 97 |
+
run_realesrgan(gfpgan_out, realesrgan_out, outscale=rescale_factor)
|
| 98 |
+
|
| 99 |
+
print("[GPU Memory after RealESRGAN]")
|
| 100 |
+
print_simple_gpu_memory()
|
| 101 |
+
|
| 102 |
+
print(f"[***] Final combined image saved at: {realesrgan_out}")
|
| 103 |
+
|
| 104 |
+
# Get resolution and file size info
|
| 105 |
+
img = cv2.imread(realesrgan_out)
|
| 106 |
+
height, width = img.shape[:2]
|
| 107 |
+
file_size_bytes = os.path.getsize(realesrgan_out)
|
| 108 |
+
file_size_mb = file_size_bytes / (1024 * 1024)
|
| 109 |
+
|
| 110 |
+
end_time = time.perf_counter()
|
| 111 |
+
elapsed = end_time - start_time
|
| 112 |
+
mins, secs = divmod(elapsed, 60)
|
| 113 |
+
hours, mins = divmod(mins, 60)
|
| 114 |
+
|
| 115 |
+
print(f"[***] Image resolution: {width}x{height}, file size: {file_size_mb:.2f} MB")
|
| 116 |
+
print(f"[***] Total processing time: {int(hours):02d}h:{int(mins):02d}m:{secs:05.2f}s")
|
| 117 |
+
|
| 118 |
+
return realesrgan_out
|
| 119 |
+
|
| 120 |
+
import gradio as gr
|
| 121 |
+
import os
|
| 122 |
+
|
| 123 |
+
# Your core functions like combined_enhance must be defined/imported before this
|
| 124 |
+
def wrapped_combined_enhance(image, scale_factor):
|
| 125 |
+
temp_input_path = "temp_input.png"
|
| 126 |
+
temp_output_dir = "output"
|
| 127 |
+
os.makedirs(temp_output_dir, exist_ok=True)
|
| 128 |
+
image.save(temp_input_path)
|
| 129 |
+
|
| 130 |
+
try:
|
| 131 |
+
final_path = combined_enhance(temp_input_path, int(scale_factor), temp_output_dir)
|
| 132 |
+
return final_path, "Enhancement succeeded!"
|
| 133 |
+
except Exception as e:
|
| 134 |
+
return None, f"[ERROR]: {str(e)}"
|
| 135 |
+
|
| 136 |
+
with gr.Blocks(title="AI Face Enhancer (GFPGAN + RealESRGAN)") as demo:
|
| 137 |
+
gr.Markdown("# ✨ Face Enhancer Pro")
|
| 138 |
+
|
| 139 |
+
with gr.Row():
|
| 140 |
+
with gr.Column():
|
| 141 |
+
input_img = gr.Image(type="pil", label="Upload Image")
|
| 142 |
+
scale_slider= gr.Slider(1, 4, value=2, step=1, label="Upscale Factor")
|
| 143 |
+
enhance_btn = gr.Button("Enhance")
|
| 144 |
+
status_box = gr.Textbox(label="Status / Logs", lines=6, interactive=False)
|
| 145 |
+
with gr.Column():
|
| 146 |
+
output_img = gr.Image(label="Enhanced Output")
|
| 147 |
+
|
| 148 |
+
def ui_callback(image, scale):
|
| 149 |
+
if image is None:
|
| 150 |
+
return None, "⚠️ Please upload an image first."
|
| 151 |
+
out_path, status = wrapped_combined_enhance(image, scale)
|
| 152 |
+
# return filepath (or None) and status string
|
| 153 |
+
return out_path, status
|
| 154 |
+
|
| 155 |
+
enhance_btn.click(
|
| 156 |
+
fn=ui_callback,
|
| 157 |
+
inputs=[input_img, scale_slider],
|
| 158 |
+
outputs=[output_img, status_box]
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
demo.launch()
|