Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import List, Optional, Sequence, Tuple | |
| import torch | |
| import torch.nn as nn | |
| from mmcv.cnn import ConvModule, Scale | |
| from mmengine.model import bias_init_with_prob, normal_init | |
| from mmengine.structures import InstanceData | |
| from torch import Tensor | |
| from mmdet.registry import MODELS, TASK_UTILS | |
| from mmdet.structures.bbox import bbox_overlaps | |
| from mmdet.utils import (ConfigType, InstanceList, OptConfigType, | |
| OptInstanceList, reduce_mean) | |
| from ..task_modules.prior_generators import anchor_inside_flags | |
| from ..utils import images_to_levels, multi_apply, unmap | |
| from .anchor_head import AnchorHead | |
| EPS = 1e-12 | |
| class DDODHead(AnchorHead): | |
| """Detection Head of `DDOD <https://arxiv.org/abs/2107.02963>`_. | |
| DDOD head decomposes conjunctions lying in most current one-stage | |
| detectors via label assignment disentanglement, spatial feature | |
| disentanglement, and pyramid supervision disentanglement. | |
| Args: | |
| num_classes (int): Number of categories excluding the | |
| background category. | |
| in_channels (int): Number of channels in the input feature map. | |
| stacked_convs (int): The number of stacked Conv. Defaults to 4. | |
| conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for | |
| convolution layer. Defaults to None. | |
| use_dcn (bool): Use dcn, Same as ATSS when False. Defaults to True. | |
| norm_cfg (:obj:`ConfigDict` or dict): Normal config of ddod head. | |
| Defaults to dict(type='GN', num_groups=32, requires_grad=True). | |
| loss_iou (:obj:`ConfigDict` or dict): Config of IoU loss. Defaults to | |
| dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0). | |
| """ | |
| def __init__(self, | |
| num_classes: int, | |
| in_channels: int, | |
| stacked_convs: int = 4, | |
| conv_cfg: OptConfigType = None, | |
| use_dcn: bool = True, | |
| norm_cfg: ConfigType = dict( | |
| type='GN', num_groups=32, requires_grad=True), | |
| loss_iou: ConfigType = dict( | |
| type='CrossEntropyLoss', | |
| use_sigmoid=True, | |
| loss_weight=1.0), | |
| **kwargs) -> None: | |
| self.stacked_convs = stacked_convs | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.use_dcn = use_dcn | |
| super().__init__(num_classes, in_channels, **kwargs) | |
| if self.train_cfg: | |
| self.cls_assigner = TASK_UTILS.build(self.train_cfg['assigner']) | |
| self.reg_assigner = TASK_UTILS.build( | |
| self.train_cfg['reg_assigner']) | |
| self.loss_iou = MODELS.build(loss_iou) | |
| def _init_layers(self) -> None: | |
| """Initialize layers of the head.""" | |
| self.relu = nn.ReLU(inplace=True) | |
| self.cls_convs = nn.ModuleList() | |
| self.reg_convs = nn.ModuleList() | |
| for i in range(self.stacked_convs): | |
| chn = self.in_channels if i == 0 else self.feat_channels | |
| self.cls_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=dict(type='DCN', deform_groups=1) | |
| if i == 0 and self.use_dcn else self.conv_cfg, | |
| norm_cfg=self.norm_cfg)) | |
| self.reg_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=dict(type='DCN', deform_groups=1) | |
| if i == 0 and self.use_dcn else self.conv_cfg, | |
| norm_cfg=self.norm_cfg)) | |
| self.atss_cls = nn.Conv2d( | |
| self.feat_channels, | |
| self.num_base_priors * self.cls_out_channels, | |
| 3, | |
| padding=1) | |
| self.atss_reg = nn.Conv2d( | |
| self.feat_channels, self.num_base_priors * 4, 3, padding=1) | |
| self.atss_iou = nn.Conv2d( | |
| self.feat_channels, self.num_base_priors * 1, 3, padding=1) | |
| self.scales = nn.ModuleList( | |
| [Scale(1.0) for _ in self.prior_generator.strides]) | |
| # we use the global list in loss | |
| self.cls_num_pos_samples_per_level = [ | |
| 0. for _ in range(len(self.prior_generator.strides)) | |
| ] | |
| self.reg_num_pos_samples_per_level = [ | |
| 0. for _ in range(len(self.prior_generator.strides)) | |
| ] | |
| def init_weights(self) -> None: | |
| """Initialize weights of the head.""" | |
| for m in self.cls_convs: | |
| normal_init(m.conv, std=0.01) | |
| for m in self.reg_convs: | |
| normal_init(m.conv, std=0.01) | |
| normal_init(self.atss_reg, std=0.01) | |
| normal_init(self.atss_iou, std=0.01) | |
| bias_cls = bias_init_with_prob(0.01) | |
| normal_init(self.atss_cls, std=0.01, bias=bias_cls) | |
| def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: | |
| """Forward features from the upstream network. | |
| Args: | |
| x (tuple[Tensor]): Features from the upstream network, each is | |
| a 4D-tensor. | |
| Returns: | |
| tuple: A tuple of classification scores, bbox predictions, | |
| and iou predictions. | |
| - cls_scores (list[Tensor]): Classification scores for all \ | |
| scale levels, each is a 4D-tensor, the channels number is \ | |
| num_base_priors * num_classes. | |
| - bbox_preds (list[Tensor]): Box energies / deltas for all \ | |
| scale levels, each is a 4D-tensor, the channels number is \ | |
| num_base_priors * 4. | |
| - iou_preds (list[Tensor]): IoU scores for all scale levels, \ | |
| each is a 4D-tensor, the channels number is num_base_priors * 1. | |
| """ | |
| return multi_apply(self.forward_single, x, self.scales) | |
| def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]: | |
| """Forward feature of a single scale level. | |
| Args: | |
| x (Tensor): Features of a single scale level. | |
| scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize | |
| the bbox prediction. | |
| Returns: | |
| tuple: | |
| - cls_score (Tensor): Cls scores for a single scale level \ | |
| the channels number is num_base_priors * num_classes. | |
| - bbox_pred (Tensor): Box energies / deltas for a single \ | |
| scale level, the channels number is num_base_priors * 4. | |
| - iou_pred (Tensor): Iou for a single scale level, the \ | |
| channel number is (N, num_base_priors * 1, H, W). | |
| """ | |
| cls_feat = x | |
| reg_feat = x | |
| for cls_conv in self.cls_convs: | |
| cls_feat = cls_conv(cls_feat) | |
| for reg_conv in self.reg_convs: | |
| reg_feat = reg_conv(reg_feat) | |
| cls_score = self.atss_cls(cls_feat) | |
| # we just follow atss, not apply exp in bbox_pred | |
| bbox_pred = scale(self.atss_reg(reg_feat)).float() | |
| iou_pred = self.atss_iou(reg_feat) | |
| return cls_score, bbox_pred, iou_pred | |
| def loss_cls_by_feat_single(self, cls_score: Tensor, labels: Tensor, | |
| label_weights: Tensor, | |
| reweight_factor: List[float], | |
| avg_factor: float) -> Tuple[Tensor]: | |
| """Compute cls loss of a single scale level. | |
| Args: | |
| cls_score (Tensor): Box scores for each scale level | |
| Has shape (N, num_base_priors * num_classes, H, W). | |
| labels (Tensor): Labels of each anchors with shape | |
| (N, num_total_anchors). | |
| label_weights (Tensor): Label weights of each anchor with shape | |
| (N, num_total_anchors) | |
| reweight_factor (List[float]): Reweight factor for cls and reg | |
| loss. | |
| avg_factor (float): Average factor that is used to average | |
| the loss. When using sampling method, avg_factor is usually | |
| the sum of positive and negative priors. When using | |
| `PseudoSampler`, `avg_factor` is usually equal to the number | |
| of positive priors. | |
| Returns: | |
| Tuple[Tensor]: A tuple of loss components. | |
| """ | |
| cls_score = cls_score.permute(0, 2, 3, 1).reshape( | |
| -1, self.cls_out_channels).contiguous() | |
| labels = labels.reshape(-1) | |
| label_weights = label_weights.reshape(-1) | |
| loss_cls = self.loss_cls( | |
| cls_score, labels, label_weights, avg_factor=avg_factor) | |
| return reweight_factor * loss_cls, | |
| def loss_reg_by_feat_single(self, anchors: Tensor, bbox_pred: Tensor, | |
| iou_pred: Tensor, labels, | |
| label_weights: Tensor, bbox_targets: Tensor, | |
| bbox_weights: Tensor, | |
| reweight_factor: List[float], | |
| avg_factor: float) -> Tuple[Tensor, Tensor]: | |
| """Compute reg loss of a single scale level based on the features | |
| extracted by the detection head. | |
| Args: | |
| anchors (Tensor): Box reference for each scale level with shape | |
| (N, num_total_anchors, 4). | |
| bbox_pred (Tensor): Box energies / deltas for each scale | |
| level with shape (N, num_base_priors * 4, H, W). | |
| iou_pred (Tensor): Iou for a single scale level, the | |
| channel number is (N, num_base_priors * 1, H, W). | |
| labels (Tensor): Labels of each anchors with shape | |
| (N, num_total_anchors). | |
| label_weights (Tensor): Label weights of each anchor with shape | |
| (N, num_total_anchors) | |
| bbox_targets (Tensor): BBox regression targets of each anchor | |
| weight shape (N, num_total_anchors, 4). | |
| bbox_weights (Tensor): BBox weights of all anchors in the | |
| image with shape (N, 4) | |
| reweight_factor (List[float]): Reweight factor for cls and reg | |
| loss. | |
| avg_factor (float): Average factor that is used to average | |
| the loss. When using sampling method, avg_factor is usually | |
| the sum of positive and negative priors. When using | |
| `PseudoSampler`, `avg_factor` is usually equal to the number | |
| of positive priors. | |
| Returns: | |
| Tuple[Tensor, Tensor]: A tuple of loss components. | |
| """ | |
| anchors = anchors.reshape(-1, 4) | |
| bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) | |
| iou_pred = iou_pred.permute(0, 2, 3, 1).reshape(-1, ) | |
| bbox_targets = bbox_targets.reshape(-1, 4) | |
| bbox_weights = bbox_weights.reshape(-1, 4) | |
| labels = labels.reshape(-1) | |
| label_weights = label_weights.reshape(-1) | |
| iou_targets = label_weights.new_zeros(labels.shape) | |
| iou_weights = label_weights.new_zeros(labels.shape) | |
| iou_weights[(bbox_weights.sum(axis=1) > 0).nonzero( | |
| as_tuple=False)] = 1. | |
| # FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
| bg_class_ind = self.num_classes | |
| pos_inds = ((labels >= 0) | |
| & | |
| (labels < bg_class_ind)).nonzero(as_tuple=False).squeeze(1) | |
| if len(pos_inds) > 0: | |
| pos_bbox_targets = bbox_targets[pos_inds] | |
| pos_bbox_pred = bbox_pred[pos_inds] | |
| pos_anchors = anchors[pos_inds] | |
| pos_decode_bbox_pred = self.bbox_coder.decode( | |
| pos_anchors, pos_bbox_pred) | |
| pos_decode_bbox_targets = self.bbox_coder.decode( | |
| pos_anchors, pos_bbox_targets) | |
| # regression loss | |
| loss_bbox = self.loss_bbox( | |
| pos_decode_bbox_pred, | |
| pos_decode_bbox_targets, | |
| avg_factor=avg_factor) | |
| iou_targets[pos_inds] = bbox_overlaps( | |
| pos_decode_bbox_pred.detach(), | |
| pos_decode_bbox_targets, | |
| is_aligned=True) | |
| loss_iou = self.loss_iou( | |
| iou_pred, iou_targets, iou_weights, avg_factor=avg_factor) | |
| else: | |
| loss_bbox = bbox_pred.sum() * 0 | |
| loss_iou = iou_pred.sum() * 0 | |
| return reweight_factor * loss_bbox, reweight_factor * loss_iou | |
| def calc_reweight_factor(self, labels_list: List[Tensor]) -> List[float]: | |
| """Compute reweight_factor for regression and classification loss.""" | |
| # get pos samples for each level | |
| bg_class_ind = self.num_classes | |
| for ii, each_level_label in enumerate(labels_list): | |
| pos_inds = ((each_level_label >= 0) & | |
| (each_level_label < bg_class_ind)).nonzero( | |
| as_tuple=False).squeeze(1) | |
| self.cls_num_pos_samples_per_level[ii] += len(pos_inds) | |
| # get reweight factor from 1 ~ 2 with bilinear interpolation | |
| min_pos_samples = min(self.cls_num_pos_samples_per_level) | |
| max_pos_samples = max(self.cls_num_pos_samples_per_level) | |
| interval = 1. / (max_pos_samples - min_pos_samples + 1e-10) | |
| reweight_factor_per_level = [] | |
| for pos_samples in self.cls_num_pos_samples_per_level: | |
| factor = 2. - (pos_samples - min_pos_samples) * interval | |
| reweight_factor_per_level.append(factor) | |
| return reweight_factor_per_level | |
| def loss_by_feat( | |
| self, | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| iou_preds: List[Tensor], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
| """Calculate the loss based on the features extracted by the detection | |
| head. | |
| Args: | |
| cls_scores (list[Tensor]): Box scores for each scale level | |
| Has shape (N, num_base_priors * num_classes, H, W) | |
| bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
| level with shape (N, num_base_priors * 4, H, W) | |
| iou_preds (list[Tensor]): Score factor for all scale level, | |
| each is a 4D-tensor, has shape (batch_size, 1, H, W). | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| Returns: | |
| dict[str, Tensor]: A dictionary of loss components. | |
| """ | |
| featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
| assert len(featmap_sizes) == self.prior_generator.num_levels | |
| device = cls_scores[0].device | |
| anchor_list, valid_flag_list = self.get_anchors( | |
| featmap_sizes, batch_img_metas, device=device) | |
| # calculate common vars for cls and reg assigners at once | |
| targets_com = self.process_predictions_and_anchors( | |
| anchor_list, valid_flag_list, cls_scores, bbox_preds, | |
| batch_img_metas, batch_gt_instances_ignore) | |
| (anchor_list, valid_flag_list, num_level_anchors_list, cls_score_list, | |
| bbox_pred_list, batch_gt_instances_ignore) = targets_com | |
| # classification branch assigner | |
| cls_targets = self.get_cls_targets( | |
| anchor_list, | |
| valid_flag_list, | |
| num_level_anchors_list, | |
| cls_score_list, | |
| bbox_pred_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore=batch_gt_instances_ignore) | |
| (cls_anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
| bbox_weights_list, avg_factor) = cls_targets | |
| avg_factor = reduce_mean( | |
| torch.tensor(avg_factor, dtype=torch.float, device=device)).item() | |
| avg_factor = max(avg_factor, 1.0) | |
| reweight_factor_per_level = self.calc_reweight_factor(labels_list) | |
| cls_losses_cls, = multi_apply( | |
| self.loss_cls_by_feat_single, | |
| cls_scores, | |
| labels_list, | |
| label_weights_list, | |
| reweight_factor_per_level, | |
| avg_factor=avg_factor) | |
| # regression branch assigner | |
| reg_targets = self.get_reg_targets( | |
| anchor_list, | |
| valid_flag_list, | |
| num_level_anchors_list, | |
| cls_score_list, | |
| bbox_pred_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore=batch_gt_instances_ignore) | |
| (reg_anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
| bbox_weights_list, avg_factor) = reg_targets | |
| avg_factor = reduce_mean( | |
| torch.tensor(avg_factor, dtype=torch.float, device=device)).item() | |
| avg_factor = max(avg_factor, 1.0) | |
| reweight_factor_per_level = self.calc_reweight_factor(labels_list) | |
| reg_losses_bbox, reg_losses_iou = multi_apply( | |
| self.loss_reg_by_feat_single, | |
| reg_anchor_list, | |
| bbox_preds, | |
| iou_preds, | |
| labels_list, | |
| label_weights_list, | |
| bbox_targets_list, | |
| bbox_weights_list, | |
| reweight_factor_per_level, | |
| avg_factor=avg_factor) | |
| return dict( | |
| loss_cls=cls_losses_cls, | |
| loss_bbox=reg_losses_bbox, | |
| loss_iou=reg_losses_iou) | |
| def process_predictions_and_anchors( | |
| self, | |
| anchor_list: List[List[Tensor]], | |
| valid_flag_list: List[List[Tensor]], | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None) -> tuple: | |
| """Compute common vars for regression and classification targets. | |
| Args: | |
| anchor_list (List[List[Tensor]]): anchors of each image. | |
| valid_flag_list (List[List[Tensor]]): Valid flags of each image. | |
| cls_scores (List[Tensor]): Classification scores for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * num_classes. | |
| bbox_preds (list[Tensor]): Box energies / deltas for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * 4. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| Return: | |
| tuple[Tensor]: A tuple of common loss vars. | |
| """ | |
| num_imgs = len(batch_img_metas) | |
| assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
| # anchor number of multi levels | |
| num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
| num_level_anchors_list = [num_level_anchors] * num_imgs | |
| anchor_list_ = [] | |
| valid_flag_list_ = [] | |
| # concat all level anchors and flags to a single tensor | |
| for i in range(num_imgs): | |
| assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
| anchor_list_.append(torch.cat(anchor_list[i])) | |
| valid_flag_list_.append(torch.cat(valid_flag_list[i])) | |
| # compute targets for each image | |
| if batch_gt_instances_ignore is None: | |
| batch_gt_instances_ignore = [None for _ in range(num_imgs)] | |
| num_levels = len(cls_scores) | |
| cls_score_list = [] | |
| bbox_pred_list = [] | |
| mlvl_cls_score_list = [ | |
| cls_score.permute(0, 2, 3, 1).reshape( | |
| num_imgs, -1, self.num_base_priors * self.cls_out_channels) | |
| for cls_score in cls_scores | |
| ] | |
| mlvl_bbox_pred_list = [ | |
| bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, | |
| self.num_base_priors * 4) | |
| for bbox_pred in bbox_preds | |
| ] | |
| for i in range(num_imgs): | |
| mlvl_cls_tensor_list = [ | |
| mlvl_cls_score_list[j][i] for j in range(num_levels) | |
| ] | |
| mlvl_bbox_tensor_list = [ | |
| mlvl_bbox_pred_list[j][i] for j in range(num_levels) | |
| ] | |
| cat_mlvl_cls_score = torch.cat(mlvl_cls_tensor_list, dim=0) | |
| cat_mlvl_bbox_pred = torch.cat(mlvl_bbox_tensor_list, dim=0) | |
| cls_score_list.append(cat_mlvl_cls_score) | |
| bbox_pred_list.append(cat_mlvl_bbox_pred) | |
| return (anchor_list_, valid_flag_list_, num_level_anchors_list, | |
| cls_score_list, bbox_pred_list, batch_gt_instances_ignore) | |
| def get_cls_targets(self, | |
| anchor_list: List[Tensor], | |
| valid_flag_list: List[Tensor], | |
| num_level_anchors_list: List[int], | |
| cls_score_list: List[Tensor], | |
| bbox_pred_list: List[Tensor], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None, | |
| unmap_outputs: bool = True) -> tuple: | |
| """Get cls targets for DDOD head. | |
| This method is almost the same as `AnchorHead.get_targets()`. | |
| Besides returning the targets as the parent method does, | |
| it also returns the anchors as the first element of the | |
| returned tuple. | |
| Args: | |
| anchor_list (list[Tensor]): anchors of each image. | |
| valid_flag_list (list[Tensor]): Valid flags of each image. | |
| num_level_anchors_list (list[Tensor]): Number of anchors of each | |
| scale level of all image. | |
| cls_score_list (list[Tensor]): Classification scores for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * num_classes. | |
| bbox_pred_list (list[Tensor]): Box energies / deltas for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * 4. | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| unmap_outputs (bool): Whether to map outputs back to the original | |
| set of anchors. | |
| Return: | |
| tuple[Tensor]: A tuple of cls targets components. | |
| """ | |
| (all_anchors, all_labels, all_label_weights, all_bbox_targets, | |
| all_bbox_weights, pos_inds_list, neg_inds_list, | |
| sampling_results_list) = multi_apply( | |
| self._get_targets_single, | |
| anchor_list, | |
| valid_flag_list, | |
| cls_score_list, | |
| bbox_pred_list, | |
| num_level_anchors_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore, | |
| unmap_outputs=unmap_outputs, | |
| is_cls_assigner=True) | |
| # Get `avg_factor` of all images, which calculate in `SamplingResult`. | |
| # When using sampling method, avg_factor is usually the sum of | |
| # positive and negative priors. When using `PseudoSampler`, | |
| # `avg_factor` is usually equal to the number of positive priors. | |
| avg_factor = sum( | |
| [results.avg_factor for results in sampling_results_list]) | |
| # split targets to a list w.r.t. multiple levels | |
| anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0]) | |
| labels_list = images_to_levels(all_labels, num_level_anchors_list[0]) | |
| label_weights_list = images_to_levels(all_label_weights, | |
| num_level_anchors_list[0]) | |
| bbox_targets_list = images_to_levels(all_bbox_targets, | |
| num_level_anchors_list[0]) | |
| bbox_weights_list = images_to_levels(all_bbox_weights, | |
| num_level_anchors_list[0]) | |
| return (anchors_list, labels_list, label_weights_list, | |
| bbox_targets_list, bbox_weights_list, avg_factor) | |
| def get_reg_targets(self, | |
| anchor_list: List[Tensor], | |
| valid_flag_list: List[Tensor], | |
| num_level_anchors_list: List[int], | |
| cls_score_list: List[Tensor], | |
| bbox_pred_list: List[Tensor], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None, | |
| unmap_outputs: bool = True) -> tuple: | |
| """Get reg targets for DDOD head. | |
| This method is almost the same as `AnchorHead.get_targets()` when | |
| is_cls_assigner is False. Besides returning the targets as the parent | |
| method does, it also returns the anchors as the first element of the | |
| returned tuple. | |
| Args: | |
| anchor_list (list[Tensor]): anchors of each image. | |
| valid_flag_list (list[Tensor]): Valid flags of each image. | |
| num_level_anchors_list (list[Tensor]): Number of anchors of each | |
| scale level of all image. | |
| cls_score_list (list[Tensor]): Classification scores for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * num_classes. | |
| bbox_pred_list (list[Tensor]): Box energies / deltas for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * 4. | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| unmap_outputs (bool): Whether to map outputs back to the original | |
| set of anchors. | |
| Return: | |
| tuple[Tensor]: A tuple of reg targets components. | |
| """ | |
| (all_anchors, all_labels, all_label_weights, all_bbox_targets, | |
| all_bbox_weights, pos_inds_list, neg_inds_list, | |
| sampling_results_list) = multi_apply( | |
| self._get_targets_single, | |
| anchor_list, | |
| valid_flag_list, | |
| cls_score_list, | |
| bbox_pred_list, | |
| num_level_anchors_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore, | |
| unmap_outputs=unmap_outputs, | |
| is_cls_assigner=False) | |
| # Get `avg_factor` of all images, which calculate in `SamplingResult`. | |
| # When using sampling method, avg_factor is usually the sum of | |
| # positive and negative priors. When using `PseudoSampler`, | |
| # `avg_factor` is usually equal to the number of positive priors. | |
| avg_factor = sum( | |
| [results.avg_factor for results in sampling_results_list]) | |
| # split targets to a list w.r.t. multiple levels | |
| anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0]) | |
| labels_list = images_to_levels(all_labels, num_level_anchors_list[0]) | |
| label_weights_list = images_to_levels(all_label_weights, | |
| num_level_anchors_list[0]) | |
| bbox_targets_list = images_to_levels(all_bbox_targets, | |
| num_level_anchors_list[0]) | |
| bbox_weights_list = images_to_levels(all_bbox_weights, | |
| num_level_anchors_list[0]) | |
| return (anchors_list, labels_list, label_weights_list, | |
| bbox_targets_list, bbox_weights_list, avg_factor) | |
| def _get_targets_single(self, | |
| flat_anchors: Tensor, | |
| valid_flags: Tensor, | |
| cls_scores: Tensor, | |
| bbox_preds: Tensor, | |
| num_level_anchors: List[int], | |
| gt_instances: InstanceData, | |
| img_meta: dict, | |
| gt_instances_ignore: Optional[InstanceData] = None, | |
| unmap_outputs: bool = True, | |
| is_cls_assigner: bool = True) -> tuple: | |
| """Compute regression, classification targets for anchors in a single | |
| image. | |
| Args: | |
| flat_anchors (Tensor): Multi-level anchors of the image, | |
| which are concatenated into a single tensor of shape | |
| (num_base_priors, 4). | |
| valid_flags (Tensor): Multi level valid flags of the image, | |
| which are concatenated into a single tensor of | |
| shape (num_base_priors,). | |
| cls_scores (Tensor): Classification scores for all scale | |
| levels of the image. | |
| bbox_preds (Tensor): Box energies / deltas for all scale | |
| levels of the image. | |
| num_level_anchors (List[int]): Number of anchors of each | |
| scale level. | |
| gt_instances (:obj:`InstanceData`): Ground truth of instance | |
| annotations. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| img_meta (dict): Meta information for current image. | |
| gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
| to be ignored during training. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| unmap_outputs (bool): Whether to map outputs back to the original | |
| set of anchors. Defaults to True. | |
| is_cls_assigner (bool): Classification or regression. | |
| Defaults to True. | |
| Returns: | |
| tuple: N is the number of total anchors in the image. | |
| - anchors (Tensor): all anchors in the image with shape (N, 4). | |
| - labels (Tensor): Labels of all anchors in the image with \ | |
| shape (N, ). | |
| - label_weights (Tensor): Label weights of all anchor in the \ | |
| image with shape (N, ). | |
| - bbox_targets (Tensor): BBox targets of all anchors in the \ | |
| image with shape (N, 4). | |
| - bbox_weights (Tensor): BBox weights of all anchors in the \ | |
| image with shape (N, 4) | |
| - pos_inds (Tensor): Indices of positive anchor with shape \ | |
| (num_pos, ). | |
| - neg_inds (Tensor): Indices of negative anchor with shape \ | |
| (num_neg, ). | |
| - sampling_result (:obj:`SamplingResult`): Sampling results. | |
| """ | |
| inside_flags = anchor_inside_flags(flat_anchors, valid_flags, | |
| img_meta['img_shape'][:2], | |
| self.train_cfg['allowed_border']) | |
| if not inside_flags.any(): | |
| raise ValueError( | |
| 'There is no valid anchor inside the image boundary. Please ' | |
| 'check the image size and anchor sizes, or set ' | |
| '``allowed_border`` to -1 to skip the condition.') | |
| # assign gt and sample anchors | |
| anchors = flat_anchors[inside_flags, :] | |
| num_level_anchors_inside = self.get_num_level_anchors_inside( | |
| num_level_anchors, inside_flags) | |
| bbox_preds_valid = bbox_preds[inside_flags, :] | |
| cls_scores_valid = cls_scores[inside_flags, :] | |
| assigner = self.cls_assigner if is_cls_assigner else self.reg_assigner | |
| # decode prediction out of assigner | |
| bbox_preds_valid = self.bbox_coder.decode(anchors, bbox_preds_valid) | |
| pred_instances = InstanceData( | |
| priors=anchors, bboxes=bbox_preds_valid, scores=cls_scores_valid) | |
| assign_result = assigner.assign( | |
| pred_instances=pred_instances, | |
| num_level_priors=num_level_anchors_inside, | |
| gt_instances=gt_instances, | |
| gt_instances_ignore=gt_instances_ignore) | |
| sampling_result = self.sampler.sample( | |
| assign_result=assign_result, | |
| pred_instances=pred_instances, | |
| gt_instances=gt_instances) | |
| num_valid_anchors = anchors.shape[0] | |
| bbox_targets = torch.zeros_like(anchors) | |
| bbox_weights = torch.zeros_like(anchors) | |
| labels = anchors.new_full((num_valid_anchors, ), | |
| self.num_classes, | |
| dtype=torch.long) | |
| label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) | |
| pos_inds = sampling_result.pos_inds | |
| neg_inds = sampling_result.neg_inds | |
| if len(pos_inds) > 0: | |
| pos_bbox_targets = self.bbox_coder.encode( | |
| sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) | |
| bbox_targets[pos_inds, :] = pos_bbox_targets | |
| bbox_weights[pos_inds, :] = 1.0 | |
| labels[pos_inds] = sampling_result.pos_gt_labels | |
| if self.train_cfg['pos_weight'] <= 0: | |
| label_weights[pos_inds] = 1.0 | |
| else: | |
| label_weights[pos_inds] = self.train_cfg['pos_weight'] | |
| if len(neg_inds) > 0: | |
| label_weights[neg_inds] = 1.0 | |
| # map up to original set of anchors | |
| if unmap_outputs: | |
| num_total_anchors = flat_anchors.size(0) | |
| anchors = unmap(anchors, num_total_anchors, inside_flags) | |
| labels = unmap( | |
| labels, num_total_anchors, inside_flags, fill=self.num_classes) | |
| label_weights = unmap(label_weights, num_total_anchors, | |
| inside_flags) | |
| bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) | |
| bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) | |
| return (anchors, labels, label_weights, bbox_targets, bbox_weights, | |
| pos_inds, neg_inds, sampling_result) | |
| def get_num_level_anchors_inside(self, num_level_anchors: List[int], | |
| inside_flags: Tensor) -> List[int]: | |
| """Get the anchors of each scale level inside. | |
| Args: | |
| num_level_anchors (list[int]): Number of anchors of each | |
| scale level. | |
| inside_flags (Tensor): Multi level inside flags of the image, | |
| which are concatenated into a single tensor of | |
| shape (num_base_priors,). | |
| Returns: | |
| list[int]: Number of anchors of each scale level inside. | |
| """ | |
| split_inside_flags = torch.split(inside_flags, num_level_anchors) | |
| num_level_anchors_inside = [ | |
| int(flags.sum()) for flags in split_inside_flags | |
| ] | |
| return num_level_anchors_inside | |