Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import Dict, List, Tuple | |
| import torch | |
| import torch.nn as nn | |
| from mmcv.cnn import Scale | |
| from mmengine.structures import InstanceData | |
| from torch import Tensor | |
| from mmdet.registry import MODELS | |
| from mmdet.utils import (ConfigType, InstanceList, MultiConfig, | |
| OptInstanceList, RangeType, reduce_mean) | |
| from ..utils import multi_apply | |
| from .anchor_free_head import AnchorFreeHead | |
| INF = 1e8 | |
| class FCOSHead(AnchorFreeHead): | |
| """Anchor-free head used in `FCOS <https://arxiv.org/abs/1904.01355>`_. | |
| The FCOS head does not use anchor boxes. Instead bounding boxes are | |
| predicted at each pixel and a centerness measure is used to suppress | |
| low-quality predictions. | |
| Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training | |
| tricks used in official repo, which will bring remarkable mAP gains | |
| of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for | |
| more detail. | |
| Args: | |
| num_classes (int): Number of categories excluding the background | |
| category. | |
| in_channels (int): Number of channels in the input feature map. | |
| strides (Sequence[int] or Sequence[Tuple[int, int]]): Strides of points | |
| in multiple feature levels. Defaults to (4, 8, 16, 32, 64). | |
| regress_ranges (Sequence[Tuple[int, int]]): Regress range of multiple | |
| level points. | |
| center_sampling (bool): If true, use center sampling. | |
| Defaults to False. | |
| center_sample_radius (float): Radius of center sampling. | |
| Defaults to 1.5. | |
| norm_on_bbox (bool): If true, normalize the regression targets with | |
| FPN strides. Defaults to False. | |
| centerness_on_reg (bool): If true, position centerness on the | |
| regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042. | |
| Defaults to False. | |
| conv_bias (bool or str): If specified as `auto`, it will be decided by | |
| the norm_cfg. Bias of conv will be set as True if `norm_cfg` is | |
| None, otherwise False. Defaults to "auto". | |
| loss_cls (:obj:`ConfigDict` or dict): Config of classification loss. | |
| loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss. | |
| loss_centerness (:obj:`ConfigDict`, or dict): Config of centerness | |
| loss. | |
| norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and | |
| config norm layer. Defaults to | |
| ``norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)``. | |
| init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ | |
| dict]): Initialization config dict. | |
| Example: | |
| >>> self = FCOSHead(11, 7) | |
| >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] | |
| >>> cls_score, bbox_pred, centerness = self.forward(feats) | |
| >>> assert len(cls_score) == len(self.scales) | |
| """ # noqa: E501 | |
| def __init__(self, | |
| num_classes: int, | |
| in_channels: int, | |
| regress_ranges: RangeType = ((-1, 64), (64, 128), (128, 256), | |
| (256, 512), (512, INF)), | |
| center_sampling: bool = False, | |
| center_sample_radius: float = 1.5, | |
| norm_on_bbox: bool = False, | |
| centerness_on_reg: bool = False, | |
| loss_cls: ConfigType = dict( | |
| type='FocalLoss', | |
| use_sigmoid=True, | |
| gamma=2.0, | |
| alpha=0.25, | |
| loss_weight=1.0), | |
| loss_bbox: ConfigType = dict(type='IoULoss', loss_weight=1.0), | |
| loss_centerness: ConfigType = dict( | |
| type='CrossEntropyLoss', | |
| use_sigmoid=True, | |
| loss_weight=1.0), | |
| norm_cfg: ConfigType = dict( | |
| type='GN', num_groups=32, requires_grad=True), | |
| init_cfg: MultiConfig = dict( | |
| type='Normal', | |
| layer='Conv2d', | |
| std=0.01, | |
| override=dict( | |
| type='Normal', | |
| name='conv_cls', | |
| std=0.01, | |
| bias_prob=0.01)), | |
| **kwargs) -> None: | |
| self.regress_ranges = regress_ranges | |
| self.center_sampling = center_sampling | |
| self.center_sample_radius = center_sample_radius | |
| self.norm_on_bbox = norm_on_bbox | |
| self.centerness_on_reg = centerness_on_reg | |
| super().__init__( | |
| num_classes=num_classes, | |
| in_channels=in_channels, | |
| loss_cls=loss_cls, | |
| loss_bbox=loss_bbox, | |
| norm_cfg=norm_cfg, | |
| init_cfg=init_cfg, | |
| **kwargs) | |
| self.loss_centerness = MODELS.build(loss_centerness) | |
| def _init_layers(self) -> None: | |
| """Initialize layers of the head.""" | |
| super()._init_layers() | |
| self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) | |
| self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) | |
| def forward( | |
| self, x: Tuple[Tensor] | |
| ) -> Tuple[List[Tensor], List[Tensor], List[Tensor]]: | |
| """Forward features from the upstream network. | |
| Args: | |
| feats (tuple[Tensor]): Features from the upstream network, each is | |
| a 4D-tensor. | |
| Returns: | |
| tuple: A tuple of each level outputs. | |
| - cls_scores (list[Tensor]): Box scores for each scale level, \ | |
| each is a 4D-tensor, the channel number is \ | |
| num_points * num_classes. | |
| - bbox_preds (list[Tensor]): Box energies / deltas for each \ | |
| scale level, each is a 4D-tensor, the channel number is \ | |
| num_points * 4. | |
| - centernesses (list[Tensor]): centerness for each scale level, \ | |
| each is a 4D-tensor, the channel number is num_points * 1. | |
| """ | |
| return multi_apply(self.forward_single, x, self.scales, self.strides) | |
| def forward_single(self, x: Tensor, scale: Scale, | |
| stride: int) -> Tuple[Tensor, Tensor, Tensor]: | |
| """Forward features of a single scale level. | |
| Args: | |
| x (Tensor): FPN feature maps of the specified stride. | |
| scale (:obj:`mmcv.cnn.Scale`): Learnable scale module to resize | |
| the bbox prediction. | |
| stride (int): The corresponding stride for feature maps, only | |
| used to normalize the bbox prediction when self.norm_on_bbox | |
| is True. | |
| Returns: | |
| tuple: scores for each class, bbox predictions and centerness | |
| predictions of input feature maps. | |
| """ | |
| cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x) | |
| if self.centerness_on_reg: | |
| centerness = self.conv_centerness(reg_feat) | |
| else: | |
| centerness = self.conv_centerness(cls_feat) | |
| # scale the bbox_pred of different level | |
| # float to avoid overflow when enabling FP16 | |
| bbox_pred = scale(bbox_pred).float() | |
| if self.norm_on_bbox: | |
| # bbox_pred needed for gradient computation has been modified | |
| # by F.relu(bbox_pred) when run with PyTorch 1.10. So replace | |
| # F.relu(bbox_pred) with bbox_pred.clamp(min=0) | |
| bbox_pred = bbox_pred.clamp(min=0) | |
| if not self.training: | |
| bbox_pred *= stride | |
| else: | |
| bbox_pred = bbox_pred.exp() | |
| return cls_score, bbox_pred, centerness | |
| def loss_by_feat( | |
| self, | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| centernesses: List[Tensor], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None | |
| ) -> Dict[str, Tensor]: | |
| """Calculate the loss based on the features extracted by the detection | |
| head. | |
| Args: | |
| cls_scores (list[Tensor]): Box scores for each scale level, | |
| each is a 4D-tensor, the channel number is | |
| num_points * num_classes. | |
| bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
| level, each is a 4D-tensor, the channel number is | |
| num_points * 4. | |
| centernesses (list[Tensor]): centerness for each scale level, each | |
| is a 4D-tensor, the channel number is num_points * 1. | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| Returns: | |
| dict[str, Tensor]: A dictionary of loss components. | |
| """ | |
| assert len(cls_scores) == len(bbox_preds) == len(centernesses) | |
| featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
| all_level_points = self.prior_generator.grid_priors( | |
| featmap_sizes, | |
| dtype=bbox_preds[0].dtype, | |
| device=bbox_preds[0].device) | |
| labels, bbox_targets = self.get_targets(all_level_points, | |
| batch_gt_instances) | |
| num_imgs = cls_scores[0].size(0) | |
| # flatten cls_scores, bbox_preds and centerness | |
| flatten_cls_scores = [ | |
| cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) | |
| for cls_score in cls_scores | |
| ] | |
| flatten_bbox_preds = [ | |
| bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) | |
| for bbox_pred in bbox_preds | |
| ] | |
| flatten_centerness = [ | |
| centerness.permute(0, 2, 3, 1).reshape(-1) | |
| for centerness in centernesses | |
| ] | |
| flatten_cls_scores = torch.cat(flatten_cls_scores) | |
| flatten_bbox_preds = torch.cat(flatten_bbox_preds) | |
| flatten_centerness = torch.cat(flatten_centerness) | |
| flatten_labels = torch.cat(labels) | |
| flatten_bbox_targets = torch.cat(bbox_targets) | |
| # repeat points to align with bbox_preds | |
| flatten_points = torch.cat( | |
| [points.repeat(num_imgs, 1) for points in all_level_points]) | |
| # FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
| bg_class_ind = self.num_classes | |
| pos_inds = ((flatten_labels >= 0) | |
| & (flatten_labels < bg_class_ind)).nonzero().reshape(-1) | |
| num_pos = torch.tensor( | |
| len(pos_inds), dtype=torch.float, device=bbox_preds[0].device) | |
| num_pos = max(reduce_mean(num_pos), 1.0) | |
| loss_cls = self.loss_cls( | |
| flatten_cls_scores, flatten_labels, avg_factor=num_pos) | |
| pos_bbox_preds = flatten_bbox_preds[pos_inds] | |
| pos_centerness = flatten_centerness[pos_inds] | |
| pos_bbox_targets = flatten_bbox_targets[pos_inds] | |
| pos_centerness_targets = self.centerness_target(pos_bbox_targets) | |
| # centerness weighted iou loss | |
| centerness_denorm = max( | |
| reduce_mean(pos_centerness_targets.sum().detach()), 1e-6) | |
| if len(pos_inds) > 0: | |
| pos_points = flatten_points[pos_inds] | |
| pos_decoded_bbox_preds = self.bbox_coder.decode( | |
| pos_points, pos_bbox_preds) | |
| pos_decoded_target_preds = self.bbox_coder.decode( | |
| pos_points, pos_bbox_targets) | |
| loss_bbox = self.loss_bbox( | |
| pos_decoded_bbox_preds, | |
| pos_decoded_target_preds, | |
| weight=pos_centerness_targets, | |
| avg_factor=centerness_denorm) | |
| loss_centerness = self.loss_centerness( | |
| pos_centerness, pos_centerness_targets, avg_factor=num_pos) | |
| else: | |
| loss_bbox = pos_bbox_preds.sum() | |
| loss_centerness = pos_centerness.sum() | |
| return dict( | |
| loss_cls=loss_cls, | |
| loss_bbox=loss_bbox, | |
| loss_centerness=loss_centerness) | |
| def get_targets( | |
| self, points: List[Tensor], batch_gt_instances: InstanceList | |
| ) -> Tuple[List[Tensor], List[Tensor]]: | |
| """Compute regression, classification and centerness targets for points | |
| in multiple images. | |
| Args: | |
| points (list[Tensor]): Points of each fpn level, each has shape | |
| (num_points, 2). | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| Returns: | |
| tuple: Targets of each level. | |
| - concat_lvl_labels (list[Tensor]): Labels of each level. | |
| - concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \ | |
| level. | |
| """ | |
| assert len(points) == len(self.regress_ranges) | |
| num_levels = len(points) | |
| # expand regress ranges to align with points | |
| expanded_regress_ranges = [ | |
| points[i].new_tensor(self.regress_ranges[i])[None].expand_as( | |
| points[i]) for i in range(num_levels) | |
| ] | |
| # concat all levels points and regress ranges | |
| concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) | |
| concat_points = torch.cat(points, dim=0) | |
| # the number of points per img, per lvl | |
| num_points = [center.size(0) for center in points] | |
| # get labels and bbox_targets of each image | |
| labels_list, bbox_targets_list = multi_apply( | |
| self._get_targets_single, | |
| batch_gt_instances, | |
| points=concat_points, | |
| regress_ranges=concat_regress_ranges, | |
| num_points_per_lvl=num_points) | |
| # split to per img, per level | |
| labels_list = [labels.split(num_points, 0) for labels in labels_list] | |
| bbox_targets_list = [ | |
| bbox_targets.split(num_points, 0) | |
| for bbox_targets in bbox_targets_list | |
| ] | |
| # concat per level image | |
| concat_lvl_labels = [] | |
| concat_lvl_bbox_targets = [] | |
| for i in range(num_levels): | |
| concat_lvl_labels.append( | |
| torch.cat([labels[i] for labels in labels_list])) | |
| bbox_targets = torch.cat( | |
| [bbox_targets[i] for bbox_targets in bbox_targets_list]) | |
| if self.norm_on_bbox: | |
| bbox_targets = bbox_targets / self.strides[i] | |
| concat_lvl_bbox_targets.append(bbox_targets) | |
| return concat_lvl_labels, concat_lvl_bbox_targets | |
| def _get_targets_single( | |
| self, gt_instances: InstanceData, points: Tensor, | |
| regress_ranges: Tensor, | |
| num_points_per_lvl: List[int]) -> Tuple[Tensor, Tensor]: | |
| """Compute regression and classification targets for a single image.""" | |
| num_points = points.size(0) | |
| num_gts = len(gt_instances) | |
| gt_bboxes = gt_instances.bboxes | |
| gt_labels = gt_instances.labels | |
| if num_gts == 0: | |
| return gt_labels.new_full((num_points,), self.num_classes), \ | |
| gt_bboxes.new_zeros((num_points, 4)) | |
| areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * ( | |
| gt_bboxes[:, 3] - gt_bboxes[:, 1]) | |
| # TODO: figure out why these two are different | |
| # areas = areas[None].expand(num_points, num_gts) | |
| areas = areas[None].repeat(num_points, 1) | |
| regress_ranges = regress_ranges[:, None, :].expand( | |
| num_points, num_gts, 2) | |
| gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) | |
| xs, ys = points[:, 0], points[:, 1] | |
| xs = xs[:, None].expand(num_points, num_gts) | |
| ys = ys[:, None].expand(num_points, num_gts) | |
| left = xs - gt_bboxes[..., 0] | |
| right = gt_bboxes[..., 2] - xs | |
| top = ys - gt_bboxes[..., 1] | |
| bottom = gt_bboxes[..., 3] - ys | |
| bbox_targets = torch.stack((left, top, right, bottom), -1) | |
| if self.center_sampling: | |
| # condition1: inside a `center bbox` | |
| radius = self.center_sample_radius | |
| center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2 | |
| center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2 | |
| center_gts = torch.zeros_like(gt_bboxes) | |
| stride = center_xs.new_zeros(center_xs.shape) | |
| # project the points on current lvl back to the `original` sizes | |
| lvl_begin = 0 | |
| for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl): | |
| lvl_end = lvl_begin + num_points_lvl | |
| stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius | |
| lvl_begin = lvl_end | |
| x_mins = center_xs - stride | |
| y_mins = center_ys - stride | |
| x_maxs = center_xs + stride | |
| y_maxs = center_ys + stride | |
| center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0], | |
| x_mins, gt_bboxes[..., 0]) | |
| center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1], | |
| y_mins, gt_bboxes[..., 1]) | |
| center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2], | |
| gt_bboxes[..., 2], x_maxs) | |
| center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3], | |
| gt_bboxes[..., 3], y_maxs) | |
| cb_dist_left = xs - center_gts[..., 0] | |
| cb_dist_right = center_gts[..., 2] - xs | |
| cb_dist_top = ys - center_gts[..., 1] | |
| cb_dist_bottom = center_gts[..., 3] - ys | |
| center_bbox = torch.stack( | |
| (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1) | |
| inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0 | |
| else: | |
| # condition1: inside a gt bbox | |
| inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0 | |
| # condition2: limit the regression range for each location | |
| max_regress_distance = bbox_targets.max(-1)[0] | |
| inside_regress_range = ( | |
| (max_regress_distance >= regress_ranges[..., 0]) | |
| & (max_regress_distance <= regress_ranges[..., 1])) | |
| # if there are still more than one objects for a location, | |
| # we choose the one with minimal area | |
| areas[inside_gt_bbox_mask == 0] = INF | |
| areas[inside_regress_range == 0] = INF | |
| min_area, min_area_inds = areas.min(dim=1) | |
| labels = gt_labels[min_area_inds] | |
| labels[min_area == INF] = self.num_classes # set as BG | |
| bbox_targets = bbox_targets[range(num_points), min_area_inds] | |
| return labels, bbox_targets | |
| def centerness_target(self, pos_bbox_targets: Tensor) -> Tensor: | |
| """Compute centerness targets. | |
| Args: | |
| pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape | |
| (num_pos, 4) | |
| Returns: | |
| Tensor: Centerness target. | |
| """ | |
| # only calculate pos centerness targets, otherwise there may be nan | |
| left_right = pos_bbox_targets[:, [0, 2]] | |
| top_bottom = pos_bbox_targets[:, [1, 3]] | |
| if len(left_right) == 0: | |
| centerness_targets = left_right[..., 0] | |
| else: | |
| centerness_targets = ( | |
| left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( | |
| top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]) | |
| return torch.sqrt(centerness_targets) | |