Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import Dict, List, Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| from mmcv.cnn import ConvModule | |
| from mmcv.ops import DeformConv2d | |
| from mmengine.config import ConfigDict | |
| from mmengine.model import BaseModule | |
| from mmengine.structures import InstanceData | |
| from torch import Tensor | |
| from mmdet.registry import MODELS | |
| from mmdet.utils import InstanceList, OptInstanceList, OptMultiConfig | |
| from ..utils import filter_scores_and_topk, multi_apply | |
| from .anchor_free_head import AnchorFreeHead | |
| INF = 1e8 | |
| class FeatureAlign(BaseModule): | |
| """Feature Align Module. | |
| Feature Align Module is implemented based on DCN v1. | |
| It uses anchor shape prediction rather than feature map to | |
| predict offsets of deform conv layer. | |
| Args: | |
| in_channels (int): Number of channels in the input feature map. | |
| out_channels (int): Number of channels in the output feature map. | |
| kernel_size (int): Size of the convolution kernel. | |
| ``norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)``. | |
| deform_groups: (int): Group number of DCN in | |
| FeatureAdaption module. | |
| init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ | |
| dict], optional): Initialization config dict. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: int = 3, | |
| deform_groups: int = 4, | |
| init_cfg: OptMultiConfig = dict( | |
| type='Normal', | |
| layer='Conv2d', | |
| std=0.1, | |
| override=dict(type='Normal', name='conv_adaption', std=0.01)) | |
| ) -> None: | |
| super().__init__(init_cfg=init_cfg) | |
| offset_channels = kernel_size * kernel_size * 2 | |
| self.conv_offset = nn.Conv2d( | |
| 4, deform_groups * offset_channels, 1, bias=False) | |
| self.conv_adaption = DeformConv2d( | |
| in_channels, | |
| out_channels, | |
| kernel_size=kernel_size, | |
| padding=(kernel_size - 1) // 2, | |
| deform_groups=deform_groups) | |
| self.relu = nn.ReLU(inplace=True) | |
| def forward(self, x: Tensor, shape: Tensor) -> Tensor: | |
| """Forward function of feature align module. | |
| Args: | |
| x (Tensor): Features from the upstream network. | |
| shape (Tensor): Exponential of bbox predictions. | |
| Returns: | |
| x (Tensor): The aligned features. | |
| """ | |
| offset = self.conv_offset(shape) | |
| x = self.relu(self.conv_adaption(x, offset)) | |
| return x | |
| class FoveaHead(AnchorFreeHead): | |
| """Detection Head of `FoveaBox: Beyond Anchor-based Object Detector. | |
| <https://arxiv.org/abs/1904.03797>`_. | |
| Args: | |
| num_classes (int): Number of categories excluding the background | |
| category. | |
| in_channels (int): Number of channels in the input feature map. | |
| base_edge_list (list[int]): List of edges. | |
| scale_ranges (list[tuple]): Range of scales. | |
| sigma (float): Super parameter of ``FoveaHead``. | |
| with_deform (bool): Whether use deform conv. | |
| deform_groups (int): Deformable conv group size. | |
| init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ | |
| dict], optional): Initialization config dict. | |
| """ | |
| def __init__(self, | |
| num_classes: int, | |
| in_channels: int, | |
| base_edge_list: List[int] = (16, 32, 64, 128, 256), | |
| scale_ranges: List[tuple] = ((8, 32), (16, 64), (32, 128), | |
| (64, 256), (128, 512)), | |
| sigma: float = 0.4, | |
| with_deform: bool = False, | |
| deform_groups: int = 4, | |
| init_cfg: OptMultiConfig = dict( | |
| type='Normal', | |
| layer='Conv2d', | |
| std=0.01, | |
| override=dict( | |
| type='Normal', | |
| name='conv_cls', | |
| std=0.01, | |
| bias_prob=0.01)), | |
| **kwargs) -> None: | |
| self.base_edge_list = base_edge_list | |
| self.scale_ranges = scale_ranges | |
| self.sigma = sigma | |
| self.with_deform = with_deform | |
| self.deform_groups = deform_groups | |
| super().__init__( | |
| num_classes=num_classes, | |
| in_channels=in_channels, | |
| init_cfg=init_cfg, | |
| **kwargs) | |
| def _init_layers(self) -> None: | |
| """Initialize layers of the head.""" | |
| # box branch | |
| super()._init_reg_convs() | |
| self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) | |
| # cls branch | |
| if not self.with_deform: | |
| super()._init_cls_convs() | |
| self.conv_cls = nn.Conv2d( | |
| self.feat_channels, self.cls_out_channels, 3, padding=1) | |
| else: | |
| self.cls_convs = nn.ModuleList() | |
| self.cls_convs.append( | |
| ConvModule( | |
| self.feat_channels, (self.feat_channels * 4), | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| bias=self.norm_cfg is None)) | |
| self.cls_convs.append( | |
| ConvModule((self.feat_channels * 4), (self.feat_channels * 4), | |
| 1, | |
| stride=1, | |
| padding=0, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| bias=self.norm_cfg is None)) | |
| self.feature_adaption = FeatureAlign( | |
| self.feat_channels, | |
| self.feat_channels, | |
| kernel_size=3, | |
| deform_groups=self.deform_groups) | |
| self.conv_cls = nn.Conv2d( | |
| int(self.feat_channels * 4), | |
| self.cls_out_channels, | |
| 3, | |
| padding=1) | |
| def forward_single(self, x: Tensor) -> Tuple[Tensor, Tensor]: | |
| """Forward features of a single scale level. | |
| Args: | |
| x (Tensor): FPN feature maps of the specified stride. | |
| Returns: | |
| tuple: scores for each class and bbox predictions of input | |
| feature maps. | |
| """ | |
| cls_feat = x | |
| reg_feat = x | |
| for reg_layer in self.reg_convs: | |
| reg_feat = reg_layer(reg_feat) | |
| bbox_pred = self.conv_reg(reg_feat) | |
| if self.with_deform: | |
| cls_feat = self.feature_adaption(cls_feat, bbox_pred.exp()) | |
| for cls_layer in self.cls_convs: | |
| cls_feat = cls_layer(cls_feat) | |
| cls_score = self.conv_cls(cls_feat) | |
| return cls_score, bbox_pred | |
| def loss_by_feat( | |
| self, | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None | |
| ) -> Dict[str, Tensor]: | |
| """Calculate the loss based on the features extracted by the detection | |
| head. | |
| Args: | |
| cls_scores (list[Tensor]): Box scores for each scale level, | |
| each is a 4D-tensor, the channel number is | |
| num_priors * num_classes. | |
| bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
| level, each is a 4D-tensor, the channel number is | |
| num_priors * 4. | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| Returns: | |
| dict[str, Tensor]: A dictionary of loss components. | |
| """ | |
| assert len(cls_scores) == len(bbox_preds) | |
| featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
| priors = self.prior_generator.grid_priors( | |
| featmap_sizes, | |
| dtype=bbox_preds[0].dtype, | |
| device=bbox_preds[0].device) | |
| num_imgs = cls_scores[0].size(0) | |
| flatten_cls_scores = [ | |
| cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) | |
| for cls_score in cls_scores | |
| ] | |
| flatten_bbox_preds = [ | |
| bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) | |
| for bbox_pred in bbox_preds | |
| ] | |
| flatten_cls_scores = torch.cat(flatten_cls_scores) | |
| flatten_bbox_preds = torch.cat(flatten_bbox_preds) | |
| flatten_labels, flatten_bbox_targets = self.get_targets( | |
| batch_gt_instances, featmap_sizes, priors) | |
| # FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
| pos_inds = ((flatten_labels >= 0) | |
| & (flatten_labels < self.num_classes)).nonzero().view(-1) | |
| num_pos = len(pos_inds) | |
| loss_cls = self.loss_cls( | |
| flatten_cls_scores, flatten_labels, avg_factor=num_pos + num_imgs) | |
| if num_pos > 0: | |
| pos_bbox_preds = flatten_bbox_preds[pos_inds] | |
| pos_bbox_targets = flatten_bbox_targets[pos_inds] | |
| pos_weights = pos_bbox_targets.new_ones(pos_bbox_targets.size()) | |
| loss_bbox = self.loss_bbox( | |
| pos_bbox_preds, | |
| pos_bbox_targets, | |
| pos_weights, | |
| avg_factor=num_pos) | |
| else: | |
| loss_bbox = torch.tensor( | |
| 0, | |
| dtype=flatten_bbox_preds.dtype, | |
| device=flatten_bbox_preds.device) | |
| return dict(loss_cls=loss_cls, loss_bbox=loss_bbox) | |
| def get_targets( | |
| self, batch_gt_instances: InstanceList, featmap_sizes: List[tuple], | |
| priors_list: List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]: | |
| """Compute regression and classification for priors in multiple images. | |
| Args: | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| featmap_sizes (list[tuple]): Size tuple of feature maps. | |
| priors_list (list[Tensor]): Priors list of each fpn level, each has | |
| shape (num_priors, 2). | |
| Returns: | |
| tuple: Targets of each level. | |
| - flatten_labels (list[Tensor]): Labels of each level. | |
| - flatten_bbox_targets (list[Tensor]): BBox targets of each | |
| level. | |
| """ | |
| label_list, bbox_target_list = multi_apply( | |
| self._get_targets_single, | |
| batch_gt_instances, | |
| featmap_size_list=featmap_sizes, | |
| priors_list=priors_list) | |
| flatten_labels = [ | |
| torch.cat([ | |
| labels_level_img.flatten() for labels_level_img in labels_level | |
| ]) for labels_level in zip(*label_list) | |
| ] | |
| flatten_bbox_targets = [ | |
| torch.cat([ | |
| bbox_targets_level_img.reshape(-1, 4) | |
| for bbox_targets_level_img in bbox_targets_level | |
| ]) for bbox_targets_level in zip(*bbox_target_list) | |
| ] | |
| flatten_labels = torch.cat(flatten_labels) | |
| flatten_bbox_targets = torch.cat(flatten_bbox_targets) | |
| return flatten_labels, flatten_bbox_targets | |
| def _get_targets_single(self, | |
| gt_instances: InstanceData, | |
| featmap_size_list: List[tuple] = None, | |
| priors_list: List[Tensor] = None) -> tuple: | |
| """Compute regression and classification targets for a single image. | |
| Args: | |
| gt_instances (:obj:`InstanceData`): Ground truth of instance | |
| annotations. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| featmap_size_list (list[tuple]): Size tuple of feature maps. | |
| priors_list (list[Tensor]): Priors of each fpn level, each has | |
| shape (num_priors, 2). | |
| Returns: | |
| tuple: | |
| - label_list (list[Tensor]): Labels of all anchors in the image. | |
| - box_target_list (list[Tensor]): BBox targets of all anchors in | |
| the image. | |
| """ | |
| gt_bboxes_raw = gt_instances.bboxes | |
| gt_labels_raw = gt_instances.labels | |
| gt_areas = torch.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) * | |
| (gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1])) | |
| label_list = [] | |
| bbox_target_list = [] | |
| # for each pyramid, find the cls and box target | |
| for base_len, (lower_bound, upper_bound), stride, featmap_size, \ | |
| priors in zip(self.base_edge_list, self.scale_ranges, | |
| self.strides, featmap_size_list, priors_list): | |
| # FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
| priors = priors.view(*featmap_size, 2) | |
| x, y = priors[..., 0], priors[..., 1] | |
| labels = gt_labels_raw.new_full(featmap_size, self.num_classes) | |
| bbox_targets = gt_bboxes_raw.new_ones(featmap_size[0], | |
| featmap_size[1], 4) | |
| # scale assignment | |
| hit_indices = ((gt_areas >= lower_bound) & | |
| (gt_areas <= upper_bound)).nonzero().flatten() | |
| if len(hit_indices) == 0: | |
| label_list.append(labels) | |
| bbox_target_list.append(torch.log(bbox_targets)) | |
| continue | |
| _, hit_index_order = torch.sort(-gt_areas[hit_indices]) | |
| hit_indices = hit_indices[hit_index_order] | |
| gt_bboxes = gt_bboxes_raw[hit_indices, :] / stride | |
| gt_labels = gt_labels_raw[hit_indices] | |
| half_w = 0.5 * (gt_bboxes[:, 2] - gt_bboxes[:, 0]) | |
| half_h = 0.5 * (gt_bboxes[:, 3] - gt_bboxes[:, 1]) | |
| # valid fovea area: left, right, top, down | |
| pos_left = torch.ceil( | |
| gt_bboxes[:, 0] + (1 - self.sigma) * half_w - 0.5).long(). \ | |
| clamp(0, featmap_size[1] - 1) | |
| pos_right = torch.floor( | |
| gt_bboxes[:, 0] + (1 + self.sigma) * half_w - 0.5).long(). \ | |
| clamp(0, featmap_size[1] - 1) | |
| pos_top = torch.ceil( | |
| gt_bboxes[:, 1] + (1 - self.sigma) * half_h - 0.5).long(). \ | |
| clamp(0, featmap_size[0] - 1) | |
| pos_down = torch.floor( | |
| gt_bboxes[:, 1] + (1 + self.sigma) * half_h - 0.5).long(). \ | |
| clamp(0, featmap_size[0] - 1) | |
| for px1, py1, px2, py2, label, (gt_x1, gt_y1, gt_x2, gt_y2) in \ | |
| zip(pos_left, pos_top, pos_right, pos_down, gt_labels, | |
| gt_bboxes_raw[hit_indices, :]): | |
| labels[py1:py2 + 1, px1:px2 + 1] = label | |
| bbox_targets[py1:py2 + 1, px1:px2 + 1, 0] = \ | |
| (x[py1:py2 + 1, px1:px2 + 1] - gt_x1) / base_len | |
| bbox_targets[py1:py2 + 1, px1:px2 + 1, 1] = \ | |
| (y[py1:py2 + 1, px1:px2 + 1] - gt_y1) / base_len | |
| bbox_targets[py1:py2 + 1, px1:px2 + 1, 2] = \ | |
| (gt_x2 - x[py1:py2 + 1, px1:px2 + 1]) / base_len | |
| bbox_targets[py1:py2 + 1, px1:px2 + 1, 3] = \ | |
| (gt_y2 - y[py1:py2 + 1, px1:px2 + 1]) / base_len | |
| bbox_targets = bbox_targets.clamp(min=1. / 16, max=16.) | |
| label_list.append(labels) | |
| bbox_target_list.append(torch.log(bbox_targets)) | |
| return label_list, bbox_target_list | |
| # Same as base_dense_head/_predict_by_feat_single except self._bbox_decode | |
| def _predict_by_feat_single(self, | |
| cls_score_list: List[Tensor], | |
| bbox_pred_list: List[Tensor], | |
| score_factor_list: List[Tensor], | |
| mlvl_priors: List[Tensor], | |
| img_meta: dict, | |
| cfg: Optional[ConfigDict] = None, | |
| rescale: bool = False, | |
| with_nms: bool = True) -> InstanceData: | |
| """Transform a single image's features extracted from the head into | |
| bbox results. | |
| Args: | |
| cls_score_list (list[Tensor]): Box scores from all scale | |
| levels of a single image, each item has shape | |
| (num_priors * num_classes, H, W). | |
| bbox_pred_list (list[Tensor]): Box energies / deltas from | |
| all scale levels of a single image, each item has shape | |
| (num_priors * 4, H, W). | |
| score_factor_list (list[Tensor]): Score factor from all scale | |
| levels of a single image, each item has shape | |
| (num_priors * 1, H, W). | |
| mlvl_priors (list[Tensor]): Each element in the list is | |
| the priors of a single level in feature pyramid, has shape | |
| (num_priors, 2). | |
| img_meta (dict): Image meta info. | |
| cfg (ConfigDict, optional): Test / postprocessing | |
| configuration, if None, test_cfg would be used. | |
| Defaults to None. | |
| rescale (bool): If True, return boxes in original image space. | |
| Defaults to False. | |
| with_nms (bool): If True, do nms before return boxes. | |
| Defaults to True. | |
| Returns: | |
| :obj:`InstanceData`: Detection results of each image | |
| after the post process. | |
| Each item usually contains following keys. | |
| - scores (Tensor): Classification scores, has a shape | |
| (num_instance, ) | |
| - labels (Tensor): Labels of bboxes, has a shape | |
| (num_instances, ). | |
| - bboxes (Tensor): Has a shape (num_instances, 4), | |
| the last dimension 4 arrange as (x1, y1, x2, y2). | |
| """ | |
| cfg = self.test_cfg if cfg is None else cfg | |
| assert len(cls_score_list) == len(bbox_pred_list) | |
| img_shape = img_meta['img_shape'] | |
| nms_pre = cfg.get('nms_pre', -1) | |
| mlvl_bboxes = [] | |
| mlvl_scores = [] | |
| mlvl_labels = [] | |
| for level_idx, (cls_score, bbox_pred, stride, base_len, priors) in \ | |
| enumerate(zip(cls_score_list, bbox_pred_list, self.strides, | |
| self.base_edge_list, mlvl_priors)): | |
| assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
| bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) | |
| scores = cls_score.permute(1, 2, 0).reshape( | |
| -1, self.cls_out_channels).sigmoid() | |
| # After https://github.com/open-mmlab/mmdetection/pull/6268/, | |
| # this operation keeps fewer bboxes under the same `nms_pre`. | |
| # There is no difference in performance for most models. If you | |
| # find a slight drop in performance, you can set a larger | |
| # `nms_pre` than before. | |
| results = filter_scores_and_topk( | |
| scores, cfg.score_thr, nms_pre, | |
| dict(bbox_pred=bbox_pred, priors=priors)) | |
| scores, labels, _, filtered_results = results | |
| bbox_pred = filtered_results['bbox_pred'] | |
| priors = filtered_results['priors'] | |
| bboxes = self._bbox_decode(priors, bbox_pred, base_len, img_shape) | |
| mlvl_bboxes.append(bboxes) | |
| mlvl_scores.append(scores) | |
| mlvl_labels.append(labels) | |
| results = InstanceData() | |
| results.bboxes = torch.cat(mlvl_bboxes) | |
| results.scores = torch.cat(mlvl_scores) | |
| results.labels = torch.cat(mlvl_labels) | |
| return self._bbox_post_process( | |
| results=results, | |
| cfg=cfg, | |
| rescale=rescale, | |
| with_nms=with_nms, | |
| img_meta=img_meta) | |
| def _bbox_decode(self, priors: Tensor, bbox_pred: Tensor, base_len: int, | |
| max_shape: int) -> Tensor: | |
| """Function to decode bbox. | |
| Args: | |
| priors (Tensor): Center proiors of an image, has shape | |
| (num_instances, 2). | |
| bbox_preds (Tensor): Box energies / deltas for all instances, | |
| has shape (batch_size, num_instances, 4). | |
| base_len (int): The base length. | |
| max_shape (int): The max shape of bbox. | |
| Returns: | |
| Tensor: Decoded bboxes in (tl_x, tl_y, br_x, br_y) format. Has | |
| shape (batch_size, num_instances, 4). | |
| """ | |
| bbox_pred = bbox_pred.exp() | |
| y = priors[:, 1] | |
| x = priors[:, 0] | |
| x1 = (x - base_len * bbox_pred[:, 0]). \ | |
| clamp(min=0, max=max_shape[1] - 1) | |
| y1 = (y - base_len * bbox_pred[:, 1]). \ | |
| clamp(min=0, max=max_shape[0] - 1) | |
| x2 = (x + base_len * bbox_pred[:, 2]). \ | |
| clamp(min=0, max=max_shape[1] - 1) | |
| y2 = (y + base_len * bbox_pred[:, 3]). \ | |
| clamp(min=0, max=max_shape[0] - 1) | |
| decoded_bboxes = torch.stack([x1, y1, x2, y2], -1) | |
| return decoded_bboxes | |