Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import List, Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| from mmcv.ops import DeformConv2d, MaskedConv2d | |
| from mmengine.model import BaseModule | |
| from mmengine.structures import InstanceData | |
| from torch import Tensor | |
| from mmdet.registry import MODELS, TASK_UTILS | |
| from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, | |
| OptInstanceList) | |
| from ..layers import multiclass_nms | |
| from ..task_modules.prior_generators import anchor_inside_flags, calc_region | |
| from ..task_modules.samplers import PseudoSampler | |
| from ..utils import images_to_levels, multi_apply, unmap | |
| from .anchor_head import AnchorHead | |
| class FeatureAdaption(BaseModule): | |
| """Feature Adaption Module. | |
| Feature Adaption Module is implemented based on DCN v1. | |
| It uses anchor shape prediction rather than feature map to | |
| predict offsets of deform conv layer. | |
| Args: | |
| in_channels (int): Number of channels in the input feature map. | |
| out_channels (int): Number of channels in the output feature map. | |
| kernel_size (int): Deformable conv kernel size. Defaults to 3. | |
| deform_groups (int): Deformable conv group size. Defaults to 4. | |
| init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \ | |
| list[dict], optional): Initialization config dict. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: int = 3, | |
| deform_groups: int = 4, | |
| init_cfg: MultiConfig = dict( | |
| type='Normal', | |
| layer='Conv2d', | |
| std=0.1, | |
| override=dict(type='Normal', name='conv_adaption', std=0.01)) | |
| ) -> None: | |
| super().__init__(init_cfg=init_cfg) | |
| offset_channels = kernel_size * kernel_size * 2 | |
| self.conv_offset = nn.Conv2d( | |
| 2, deform_groups * offset_channels, 1, bias=False) | |
| self.conv_adaption = DeformConv2d( | |
| in_channels, | |
| out_channels, | |
| kernel_size=kernel_size, | |
| padding=(kernel_size - 1) // 2, | |
| deform_groups=deform_groups) | |
| self.relu = nn.ReLU(inplace=True) | |
| def forward(self, x: Tensor, shape: Tensor) -> Tensor: | |
| offset = self.conv_offset(shape.detach()) | |
| x = self.relu(self.conv_adaption(x, offset)) | |
| return x | |
| class GuidedAnchorHead(AnchorHead): | |
| """Guided-Anchor-based head (GA-RPN, GA-RetinaNet, etc.). | |
| This GuidedAnchorHead will predict high-quality feature guided | |
| anchors and locations where anchors will be kept in inference. | |
| There are mainly 3 categories of bounding-boxes. | |
| - Sampled 9 pairs for target assignment. (approxes) | |
| - The square boxes where the predicted anchors are based on. (squares) | |
| - Guided anchors. | |
| Please refer to https://arxiv.org/abs/1901.03278 for more details. | |
| Args: | |
| num_classes (int): Number of classes. | |
| in_channels (int): Number of channels in the input feature map. | |
| feat_channels (int): Number of hidden channels. Defaults to 256. | |
| approx_anchor_generator (:obj:`ConfigDict` or dict): Config dict | |
| for approx generator | |
| square_anchor_generator (:obj:`ConfigDict` or dict): Config dict | |
| for square generator | |
| anchor_coder (:obj:`ConfigDict` or dict): Config dict for anchor coder | |
| bbox_coder (:obj:`ConfigDict` or dict): Config dict for bbox coder | |
| reg_decoded_bbox (bool): If true, the regression loss would be | |
| applied directly on decoded bounding boxes, converting both | |
| the predicted boxes and regression targets to absolute | |
| coordinates format. Defaults to False. It should be `True` when | |
| using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. | |
| deform_groups: (int): Group number of DCN in FeatureAdaption module. | |
| Defaults to 4. | |
| loc_filter_thr (float): Threshold to filter out unconcerned regions. | |
| Defaults to 0.01. | |
| loss_loc (:obj:`ConfigDict` or dict): Config of location loss. | |
| loss_shape (:obj:`ConfigDict` or dict): Config of anchor shape loss. | |
| loss_cls (:obj:`ConfigDict` or dict): Config of classification loss. | |
| loss_bbox (:obj:`ConfigDict` or dict): Config of bbox regression loss. | |
| init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \ | |
| list[dict], optional): Initialization config dict. | |
| """ | |
| def __init__( | |
| self, | |
| num_classes: int, | |
| in_channels: int, | |
| feat_channels: int = 256, | |
| approx_anchor_generator: ConfigType = dict( | |
| type='AnchorGenerator', | |
| octave_base_scale=8, | |
| scales_per_octave=3, | |
| ratios=[0.5, 1.0, 2.0], | |
| strides=[4, 8, 16, 32, 64]), | |
| square_anchor_generator: ConfigType = dict( | |
| type='AnchorGenerator', | |
| ratios=[1.0], | |
| scales=[8], | |
| strides=[4, 8, 16, 32, 64]), | |
| anchor_coder: ConfigType = dict( | |
| type='DeltaXYWHBBoxCoder', | |
| target_means=[.0, .0, .0, .0], | |
| target_stds=[1.0, 1.0, 1.0, 1.0]), | |
| bbox_coder: ConfigType = dict( | |
| type='DeltaXYWHBBoxCoder', | |
| target_means=[.0, .0, .0, .0], | |
| target_stds=[1.0, 1.0, 1.0, 1.0]), | |
| reg_decoded_bbox: bool = False, | |
| deform_groups: int = 4, | |
| loc_filter_thr: float = 0.01, | |
| train_cfg: OptConfigType = None, | |
| test_cfg: OptConfigType = None, | |
| loss_loc: ConfigType = dict( | |
| type='FocalLoss', | |
| use_sigmoid=True, | |
| gamma=2.0, | |
| alpha=0.25, | |
| loss_weight=1.0), | |
| loss_shape: ConfigType = dict( | |
| type='BoundedIoULoss', beta=0.2, loss_weight=1.0), | |
| loss_cls: ConfigType = dict( | |
| type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), | |
| loss_bbox: ConfigType = dict( | |
| type='SmoothL1Loss', beta=1.0, loss_weight=1.0), | |
| init_cfg: MultiConfig = dict( | |
| type='Normal', | |
| layer='Conv2d', | |
| std=0.01, | |
| override=dict( | |
| type='Normal', name='conv_loc', std=0.01, lbias_prob=0.01)) | |
| ) -> None: | |
| super(AnchorHead, self).__init__(init_cfg=init_cfg) | |
| self.in_channels = in_channels | |
| self.num_classes = num_classes | |
| self.feat_channels = feat_channels | |
| self.deform_groups = deform_groups | |
| self.loc_filter_thr = loc_filter_thr | |
| # build approx_anchor_generator and square_anchor_generator | |
| assert (approx_anchor_generator['octave_base_scale'] == | |
| square_anchor_generator['scales'][0]) | |
| assert (approx_anchor_generator['strides'] == | |
| square_anchor_generator['strides']) | |
| self.approx_anchor_generator = TASK_UTILS.build( | |
| approx_anchor_generator) | |
| self.square_anchor_generator = TASK_UTILS.build( | |
| square_anchor_generator) | |
| self.approxs_per_octave = self.approx_anchor_generator \ | |
| .num_base_priors[0] | |
| self.reg_decoded_bbox = reg_decoded_bbox | |
| # one anchor per location | |
| self.num_base_priors = self.square_anchor_generator.num_base_priors[0] | |
| self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) | |
| self.loc_focal_loss = loss_loc['type'] in ['FocalLoss'] | |
| if self.use_sigmoid_cls: | |
| self.cls_out_channels = self.num_classes | |
| else: | |
| self.cls_out_channels = self.num_classes + 1 | |
| # build bbox_coder | |
| self.anchor_coder = TASK_UTILS.build(anchor_coder) | |
| self.bbox_coder = TASK_UTILS.build(bbox_coder) | |
| # build losses | |
| self.loss_loc = MODELS.build(loss_loc) | |
| self.loss_shape = MODELS.build(loss_shape) | |
| self.loss_cls = MODELS.build(loss_cls) | |
| self.loss_bbox = MODELS.build(loss_bbox) | |
| self.train_cfg = train_cfg | |
| self.test_cfg = test_cfg | |
| if self.train_cfg: | |
| self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) | |
| # use PseudoSampler when no sampler in train_cfg | |
| if train_cfg.get('sampler', None) is not None: | |
| self.sampler = TASK_UTILS.build( | |
| self.train_cfg['sampler'], default_args=dict(context=self)) | |
| else: | |
| self.sampler = PseudoSampler() | |
| self.ga_assigner = TASK_UTILS.build(self.train_cfg['ga_assigner']) | |
| if train_cfg.get('ga_sampler', None) is not None: | |
| self.ga_sampler = TASK_UTILS.build( | |
| self.train_cfg['ga_sampler'], | |
| default_args=dict(context=self)) | |
| else: | |
| self.ga_sampler = PseudoSampler() | |
| self._init_layers() | |
| def _init_layers(self) -> None: | |
| """Initialize layers of the head.""" | |
| self.relu = nn.ReLU(inplace=True) | |
| self.conv_loc = nn.Conv2d(self.in_channels, 1, 1) | |
| self.conv_shape = nn.Conv2d(self.in_channels, self.num_base_priors * 2, | |
| 1) | |
| self.feature_adaption = FeatureAdaption( | |
| self.in_channels, | |
| self.feat_channels, | |
| kernel_size=3, | |
| deform_groups=self.deform_groups) | |
| self.conv_cls = MaskedConv2d( | |
| self.feat_channels, self.num_base_priors * self.cls_out_channels, | |
| 1) | |
| self.conv_reg = MaskedConv2d(self.feat_channels, | |
| self.num_base_priors * 4, 1) | |
| def forward_single(self, x: Tensor) -> Tuple[Tensor]: | |
| """Forward feature of a single scale level.""" | |
| loc_pred = self.conv_loc(x) | |
| shape_pred = self.conv_shape(x) | |
| x = self.feature_adaption(x, shape_pred) | |
| # masked conv is only used during inference for speed-up | |
| if not self.training: | |
| mask = loc_pred.sigmoid()[0] >= self.loc_filter_thr | |
| else: | |
| mask = None | |
| cls_score = self.conv_cls(x, mask) | |
| bbox_pred = self.conv_reg(x, mask) | |
| return cls_score, bbox_pred, shape_pred, loc_pred | |
| def forward(self, x: List[Tensor]) -> Tuple[List[Tensor]]: | |
| """Forward features from the upstream network.""" | |
| return multi_apply(self.forward_single, x) | |
| def get_sampled_approxs(self, | |
| featmap_sizes: List[Tuple[int, int]], | |
| batch_img_metas: List[dict], | |
| device: str = 'cuda') -> tuple: | |
| """Get sampled approxs and inside flags according to feature map sizes. | |
| Args: | |
| featmap_sizes (list[tuple]): Multi-level feature map sizes. | |
| batch_img_metas (list[dict]): Image meta info. | |
| device (str): device for returned tensors | |
| Returns: | |
| tuple: approxes of each image, inside flags of each image | |
| """ | |
| num_imgs = len(batch_img_metas) | |
| # since feature map sizes of all images are the same, we only compute | |
| # approxes for one time | |
| multi_level_approxs = self.approx_anchor_generator.grid_priors( | |
| featmap_sizes, device=device) | |
| approxs_list = [multi_level_approxs for _ in range(num_imgs)] | |
| # for each image, we compute inside flags of multi level approxes | |
| inside_flag_list = [] | |
| for img_id, img_meta in enumerate(batch_img_metas): | |
| multi_level_flags = [] | |
| multi_level_approxs = approxs_list[img_id] | |
| # obtain valid flags for each approx first | |
| multi_level_approx_flags = self.approx_anchor_generator \ | |
| .valid_flags(featmap_sizes, | |
| img_meta['pad_shape'], | |
| device=device) | |
| for i, flags in enumerate(multi_level_approx_flags): | |
| approxs = multi_level_approxs[i] | |
| inside_flags_list = [] | |
| for j in range(self.approxs_per_octave): | |
| split_valid_flags = flags[j::self.approxs_per_octave] | |
| split_approxs = approxs[j::self.approxs_per_octave, :] | |
| inside_flags = anchor_inside_flags( | |
| split_approxs, split_valid_flags, | |
| img_meta['img_shape'][:2], | |
| self.train_cfg['allowed_border']) | |
| inside_flags_list.append(inside_flags) | |
| # inside_flag for a position is true if any anchor in this | |
| # position is true | |
| inside_flags = ( | |
| torch.stack(inside_flags_list, 0).sum(dim=0) > 0) | |
| multi_level_flags.append(inside_flags) | |
| inside_flag_list.append(multi_level_flags) | |
| return approxs_list, inside_flag_list | |
| def get_anchors(self, | |
| featmap_sizes: List[Tuple[int, int]], | |
| shape_preds: List[Tensor], | |
| loc_preds: List[Tensor], | |
| batch_img_metas: List[dict], | |
| use_loc_filter: bool = False, | |
| device: str = 'cuda') -> tuple: | |
| """Get squares according to feature map sizes and guided anchors. | |
| Args: | |
| featmap_sizes (list[tuple]): Multi-level feature map sizes. | |
| shape_preds (list[tensor]): Multi-level shape predictions. | |
| loc_preds (list[tensor]): Multi-level location predictions. | |
| batch_img_metas (list[dict]): Image meta info. | |
| use_loc_filter (bool): Use loc filter or not. Defaults to False | |
| device (str): device for returned tensors. | |
| Defaults to `cuda`. | |
| Returns: | |
| tuple: square approxs of each image, guided anchors of each image, | |
| loc masks of each image. | |
| """ | |
| num_imgs = len(batch_img_metas) | |
| num_levels = len(featmap_sizes) | |
| # since feature map sizes of all images are the same, we only compute | |
| # squares for one time | |
| multi_level_squares = self.square_anchor_generator.grid_priors( | |
| featmap_sizes, device=device) | |
| squares_list = [multi_level_squares for _ in range(num_imgs)] | |
| # for each image, we compute multi level guided anchors | |
| guided_anchors_list = [] | |
| loc_mask_list = [] | |
| for img_id, img_meta in enumerate(batch_img_metas): | |
| multi_level_guided_anchors = [] | |
| multi_level_loc_mask = [] | |
| for i in range(num_levels): | |
| squares = squares_list[img_id][i] | |
| shape_pred = shape_preds[i][img_id] | |
| loc_pred = loc_preds[i][img_id] | |
| guided_anchors, loc_mask = self._get_guided_anchors_single( | |
| squares, | |
| shape_pred, | |
| loc_pred, | |
| use_loc_filter=use_loc_filter) | |
| multi_level_guided_anchors.append(guided_anchors) | |
| multi_level_loc_mask.append(loc_mask) | |
| guided_anchors_list.append(multi_level_guided_anchors) | |
| loc_mask_list.append(multi_level_loc_mask) | |
| return squares_list, guided_anchors_list, loc_mask_list | |
| def _get_guided_anchors_single( | |
| self, | |
| squares: Tensor, | |
| shape_pred: Tensor, | |
| loc_pred: Tensor, | |
| use_loc_filter: bool = False) -> Tuple[Tensor]: | |
| """Get guided anchors and loc masks for a single level. | |
| Args: | |
| squares (tensor): Squares of a single level. | |
| shape_pred (tensor): Shape predictions of a single level. | |
| loc_pred (tensor): Loc predictions of a single level. | |
| use_loc_filter (list[tensor]): Use loc filter or not. | |
| Defaults to False. | |
| Returns: | |
| tuple: guided anchors, location masks | |
| """ | |
| # calculate location filtering mask | |
| loc_pred = loc_pred.sigmoid().detach() | |
| if use_loc_filter: | |
| loc_mask = loc_pred >= self.loc_filter_thr | |
| else: | |
| loc_mask = loc_pred >= 0.0 | |
| mask = loc_mask.permute(1, 2, 0).expand(-1, -1, self.num_base_priors) | |
| mask = mask.contiguous().view(-1) | |
| # calculate guided anchors | |
| squares = squares[mask] | |
| anchor_deltas = shape_pred.permute(1, 2, 0).contiguous().view( | |
| -1, 2).detach()[mask] | |
| bbox_deltas = anchor_deltas.new_full(squares.size(), 0) | |
| bbox_deltas[:, 2:] = anchor_deltas | |
| guided_anchors = self.anchor_coder.decode( | |
| squares, bbox_deltas, wh_ratio_clip=1e-6) | |
| return guided_anchors, mask | |
| def ga_loc_targets(self, batch_gt_instances: InstanceList, | |
| featmap_sizes: List[Tuple[int, int]]) -> tuple: | |
| """Compute location targets for guided anchoring. | |
| Each feature map is divided into positive, negative and ignore regions. | |
| - positive regions: target 1, weight 1 | |
| - ignore regions: target 0, weight 0 | |
| - negative regions: target 0, weight 0.1 | |
| Args: | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| featmap_sizes (list[tuple]): Multi level sizes of each feature | |
| maps. | |
| Returns: | |
| tuple: Returns a tuple containing location targets. | |
| """ | |
| anchor_scale = self.approx_anchor_generator.octave_base_scale | |
| anchor_strides = self.approx_anchor_generator.strides | |
| # Currently only supports same stride in x and y direction. | |
| for stride in anchor_strides: | |
| assert (stride[0] == stride[1]) | |
| anchor_strides = [stride[0] for stride in anchor_strides] | |
| center_ratio = self.train_cfg['center_ratio'] | |
| ignore_ratio = self.train_cfg['ignore_ratio'] | |
| img_per_gpu = len(batch_gt_instances) | |
| num_lvls = len(featmap_sizes) | |
| r1 = (1 - center_ratio) / 2 | |
| r2 = (1 - ignore_ratio) / 2 | |
| all_loc_targets = [] | |
| all_loc_weights = [] | |
| all_ignore_map = [] | |
| for lvl_id in range(num_lvls): | |
| h, w = featmap_sizes[lvl_id] | |
| loc_targets = torch.zeros( | |
| img_per_gpu, | |
| 1, | |
| h, | |
| w, | |
| device=batch_gt_instances[0].bboxes.device, | |
| dtype=torch.float32) | |
| loc_weights = torch.full_like(loc_targets, -1) | |
| ignore_map = torch.zeros_like(loc_targets) | |
| all_loc_targets.append(loc_targets) | |
| all_loc_weights.append(loc_weights) | |
| all_ignore_map.append(ignore_map) | |
| for img_id in range(img_per_gpu): | |
| gt_bboxes = batch_gt_instances[img_id].bboxes | |
| scale = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) * | |
| (gt_bboxes[:, 3] - gt_bboxes[:, 1])) | |
| min_anchor_size = scale.new_full( | |
| (1, ), float(anchor_scale * anchor_strides[0])) | |
| # assign gt bboxes to different feature levels w.r.t. their scales | |
| target_lvls = torch.floor( | |
| torch.log2(scale) - torch.log2(min_anchor_size) + 0.5) | |
| target_lvls = target_lvls.clamp(min=0, max=num_lvls - 1).long() | |
| for gt_id in range(gt_bboxes.size(0)): | |
| lvl = target_lvls[gt_id].item() | |
| # rescaled to corresponding feature map | |
| gt_ = gt_bboxes[gt_id, :4] / anchor_strides[lvl] | |
| # calculate ignore regions | |
| ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( | |
| gt_, r2, featmap_sizes[lvl]) | |
| # calculate positive (center) regions | |
| ctr_x1, ctr_y1, ctr_x2, ctr_y2 = calc_region( | |
| gt_, r1, featmap_sizes[lvl]) | |
| all_loc_targets[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, | |
| ctr_x1:ctr_x2 + 1] = 1 | |
| all_loc_weights[lvl][img_id, 0, ignore_y1:ignore_y2 + 1, | |
| ignore_x1:ignore_x2 + 1] = 0 | |
| all_loc_weights[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, | |
| ctr_x1:ctr_x2 + 1] = 1 | |
| # calculate ignore map on nearby low level feature | |
| if lvl > 0: | |
| d_lvl = lvl - 1 | |
| # rescaled to corresponding feature map | |
| gt_ = gt_bboxes[gt_id, :4] / anchor_strides[d_lvl] | |
| ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( | |
| gt_, r2, featmap_sizes[d_lvl]) | |
| all_ignore_map[d_lvl][img_id, 0, ignore_y1:ignore_y2 + 1, | |
| ignore_x1:ignore_x2 + 1] = 1 | |
| # calculate ignore map on nearby high level feature | |
| if lvl < num_lvls - 1: | |
| u_lvl = lvl + 1 | |
| # rescaled to corresponding feature map | |
| gt_ = gt_bboxes[gt_id, :4] / anchor_strides[u_lvl] | |
| ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( | |
| gt_, r2, featmap_sizes[u_lvl]) | |
| all_ignore_map[u_lvl][img_id, 0, ignore_y1:ignore_y2 + 1, | |
| ignore_x1:ignore_x2 + 1] = 1 | |
| for lvl_id in range(num_lvls): | |
| # ignore negative regions w.r.t. ignore map | |
| all_loc_weights[lvl_id][(all_loc_weights[lvl_id] < 0) | |
| & (all_ignore_map[lvl_id] > 0)] = 0 | |
| # set negative regions with weight 0.1 | |
| all_loc_weights[lvl_id][all_loc_weights[lvl_id] < 0] = 0.1 | |
| # loc average factor to balance loss | |
| loc_avg_factor = sum( | |
| [t.size(0) * t.size(-1) * t.size(-2) | |
| for t in all_loc_targets]) / 200 | |
| return all_loc_targets, all_loc_weights, loc_avg_factor | |
| def _ga_shape_target_single(self, | |
| flat_approxs: Tensor, | |
| inside_flags: Tensor, | |
| flat_squares: Tensor, | |
| gt_instances: InstanceData, | |
| gt_instances_ignore: Optional[InstanceData], | |
| img_meta: dict, | |
| unmap_outputs: bool = True) -> tuple: | |
| """Compute guided anchoring targets. | |
| This function returns sampled anchors and gt bboxes directly | |
| rather than calculates regression targets. | |
| Args: | |
| flat_approxs (Tensor): flat approxs of a single image, | |
| shape (n, 4) | |
| inside_flags (Tensor): inside flags of a single image, | |
| shape (n, ). | |
| flat_squares (Tensor): flat squares of a single image, | |
| shape (approxs_per_octave * n, 4) | |
| gt_instances (:obj:`InstanceData`): Ground truth of instance | |
| annotations. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
| to be ignored during training. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| img_meta (dict): Meta info of a single image. | |
| unmap_outputs (bool): unmap outputs or not. | |
| Returns: | |
| tuple: Returns a tuple containing shape targets of each image. | |
| """ | |
| if not inside_flags.any(): | |
| raise ValueError( | |
| 'There is no valid anchor inside the image boundary. Please ' | |
| 'check the image size and anchor sizes, or set ' | |
| '``allowed_border`` to -1 to skip the condition.') | |
| # assign gt and sample anchors | |
| num_square = flat_squares.size(0) | |
| approxs = flat_approxs.view(num_square, self.approxs_per_octave, 4) | |
| approxs = approxs[inside_flags, ...] | |
| squares = flat_squares[inside_flags, :] | |
| pred_instances = InstanceData() | |
| pred_instances.priors = squares | |
| pred_instances.approxs = approxs | |
| assign_result = self.ga_assigner.assign( | |
| pred_instances=pred_instances, | |
| gt_instances=gt_instances, | |
| gt_instances_ignore=gt_instances_ignore) | |
| sampling_result = self.ga_sampler.sample( | |
| assign_result=assign_result, | |
| pred_instances=pred_instances, | |
| gt_instances=gt_instances) | |
| bbox_anchors = torch.zeros_like(squares) | |
| bbox_gts = torch.zeros_like(squares) | |
| bbox_weights = torch.zeros_like(squares) | |
| pos_inds = sampling_result.pos_inds | |
| neg_inds = sampling_result.neg_inds | |
| if len(pos_inds) > 0: | |
| bbox_anchors[pos_inds, :] = sampling_result.pos_bboxes | |
| bbox_gts[pos_inds, :] = sampling_result.pos_gt_bboxes | |
| bbox_weights[pos_inds, :] = 1.0 | |
| # map up to original set of anchors | |
| if unmap_outputs: | |
| num_total_anchors = flat_squares.size(0) | |
| bbox_anchors = unmap(bbox_anchors, num_total_anchors, inside_flags) | |
| bbox_gts = unmap(bbox_gts, num_total_anchors, inside_flags) | |
| bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) | |
| return (bbox_anchors, bbox_gts, bbox_weights, pos_inds, neg_inds, | |
| sampling_result) | |
| def ga_shape_targets(self, | |
| approx_list: List[List[Tensor]], | |
| inside_flag_list: List[List[Tensor]], | |
| square_list: List[List[Tensor]], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None, | |
| unmap_outputs: bool = True) -> tuple: | |
| """Compute guided anchoring targets. | |
| Args: | |
| approx_list (list[list[Tensor]]): Multi level approxs of each | |
| image. | |
| inside_flag_list (list[list[Tensor]]): Multi level inside flags | |
| of each image. | |
| square_list (list[list[Tensor]]): Multi level squares of each | |
| image. | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| unmap_outputs (bool): unmap outputs or not. Defaults to None. | |
| Returns: | |
| tuple: Returns a tuple containing shape targets. | |
| """ | |
| num_imgs = len(batch_img_metas) | |
| assert len(approx_list) == len(inside_flag_list) == len( | |
| square_list) == num_imgs | |
| # anchor number of multi levels | |
| num_level_squares = [squares.size(0) for squares in square_list[0]] | |
| # concat all level anchors and flags to a single tensor | |
| inside_flag_flat_list = [] | |
| approx_flat_list = [] | |
| square_flat_list = [] | |
| for i in range(num_imgs): | |
| assert len(square_list[i]) == len(inside_flag_list[i]) | |
| inside_flag_flat_list.append(torch.cat(inside_flag_list[i])) | |
| approx_flat_list.append(torch.cat(approx_list[i])) | |
| square_flat_list.append(torch.cat(square_list[i])) | |
| # compute targets for each image | |
| if batch_gt_instances_ignore is None: | |
| batch_gt_instances_ignore = [None for _ in range(num_imgs)] | |
| (all_bbox_anchors, all_bbox_gts, all_bbox_weights, pos_inds_list, | |
| neg_inds_list, sampling_results_list) = multi_apply( | |
| self._ga_shape_target_single, | |
| approx_flat_list, | |
| inside_flag_flat_list, | |
| square_flat_list, | |
| batch_gt_instances, | |
| batch_gt_instances_ignore, | |
| batch_img_metas, | |
| unmap_outputs=unmap_outputs) | |
| # sampled anchors of all images | |
| avg_factor = sum( | |
| [results.avg_factor for results in sampling_results_list]) | |
| # split targets to a list w.r.t. multiple levels | |
| bbox_anchors_list = images_to_levels(all_bbox_anchors, | |
| num_level_squares) | |
| bbox_gts_list = images_to_levels(all_bbox_gts, num_level_squares) | |
| bbox_weights_list = images_to_levels(all_bbox_weights, | |
| num_level_squares) | |
| return (bbox_anchors_list, bbox_gts_list, bbox_weights_list, | |
| avg_factor) | |
| def loss_shape_single(self, shape_pred: Tensor, bbox_anchors: Tensor, | |
| bbox_gts: Tensor, anchor_weights: Tensor, | |
| avg_factor: int) -> Tensor: | |
| """Compute shape loss in single level.""" | |
| shape_pred = shape_pred.permute(0, 2, 3, 1).contiguous().view(-1, 2) | |
| bbox_anchors = bbox_anchors.contiguous().view(-1, 4) | |
| bbox_gts = bbox_gts.contiguous().view(-1, 4) | |
| anchor_weights = anchor_weights.contiguous().view(-1, 4) | |
| bbox_deltas = bbox_anchors.new_full(bbox_anchors.size(), 0) | |
| bbox_deltas[:, 2:] += shape_pred | |
| # filter out negative samples to speed-up weighted_bounded_iou_loss | |
| inds = torch.nonzero( | |
| anchor_weights[:, 0] > 0, as_tuple=False).squeeze(1) | |
| bbox_deltas_ = bbox_deltas[inds] | |
| bbox_anchors_ = bbox_anchors[inds] | |
| bbox_gts_ = bbox_gts[inds] | |
| anchor_weights_ = anchor_weights[inds] | |
| pred_anchors_ = self.anchor_coder.decode( | |
| bbox_anchors_, bbox_deltas_, wh_ratio_clip=1e-6) | |
| loss_shape = self.loss_shape( | |
| pred_anchors_, bbox_gts_, anchor_weights_, avg_factor=avg_factor) | |
| return loss_shape | |
| def loss_loc_single(self, loc_pred: Tensor, loc_target: Tensor, | |
| loc_weight: Tensor, avg_factor: float) -> Tensor: | |
| """Compute location loss in single level.""" | |
| loss_loc = self.loss_loc( | |
| loc_pred.reshape(-1, 1), | |
| loc_target.reshape(-1).long(), | |
| loc_weight.reshape(-1), | |
| avg_factor=avg_factor) | |
| return loss_loc | |
| def loss_by_feat( | |
| self, | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| shape_preds: List[Tensor], | |
| loc_preds: List[Tensor], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
| """Calculate the loss based on the features extracted by the detection | |
| head. | |
| Args: | |
| cls_scores (list[Tensor]): Box scores for each scale level | |
| has shape (N, num_anchors * num_classes, H, W). | |
| bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
| level with shape (N, num_anchors * 4, H, W). | |
| shape_preds (list[Tensor]): shape predictions for each scale | |
| level with shape (N, 1, H, W). | |
| loc_preds (list[Tensor]): location predictions for each scale | |
| level with shape (N, num_anchors * 2, H, W). | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| Returns: | |
| dict: A dictionary of loss components. | |
| """ | |
| featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
| assert len(featmap_sizes) == self.approx_anchor_generator.num_levels | |
| device = cls_scores[0].device | |
| # get loc targets | |
| loc_targets, loc_weights, loc_avg_factor = self.ga_loc_targets( | |
| batch_gt_instances, featmap_sizes) | |
| # get sampled approxes | |
| approxs_list, inside_flag_list = self.get_sampled_approxs( | |
| featmap_sizes, batch_img_metas, device=device) | |
| # get squares and guided anchors | |
| squares_list, guided_anchors_list, _ = self.get_anchors( | |
| featmap_sizes, | |
| shape_preds, | |
| loc_preds, | |
| batch_img_metas, | |
| device=device) | |
| # get shape targets | |
| shape_targets = self.ga_shape_targets(approxs_list, inside_flag_list, | |
| squares_list, batch_gt_instances, | |
| batch_img_metas) | |
| (bbox_anchors_list, bbox_gts_list, anchor_weights_list, | |
| ga_avg_factor) = shape_targets | |
| # get anchor targets | |
| cls_reg_targets = self.get_targets( | |
| guided_anchors_list, | |
| inside_flag_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore=batch_gt_instances_ignore) | |
| (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, | |
| avg_factor) = cls_reg_targets | |
| # anchor number of multi levels | |
| num_level_anchors = [ | |
| anchors.size(0) for anchors in guided_anchors_list[0] | |
| ] | |
| # concat all level anchors to a single tensor | |
| concat_anchor_list = [] | |
| for i in range(len(guided_anchors_list)): | |
| concat_anchor_list.append(torch.cat(guided_anchors_list[i])) | |
| all_anchor_list = images_to_levels(concat_anchor_list, | |
| num_level_anchors) | |
| # get classification and bbox regression losses | |
| losses_cls, losses_bbox = multi_apply( | |
| self.loss_by_feat_single, | |
| cls_scores, | |
| bbox_preds, | |
| all_anchor_list, | |
| labels_list, | |
| label_weights_list, | |
| bbox_targets_list, | |
| bbox_weights_list, | |
| avg_factor=avg_factor) | |
| # get anchor location loss | |
| losses_loc = [] | |
| for i in range(len(loc_preds)): | |
| loss_loc = self.loss_loc_single( | |
| loc_preds[i], | |
| loc_targets[i], | |
| loc_weights[i], | |
| avg_factor=loc_avg_factor) | |
| losses_loc.append(loss_loc) | |
| # get anchor shape loss | |
| losses_shape = [] | |
| for i in range(len(shape_preds)): | |
| loss_shape = self.loss_shape_single( | |
| shape_preds[i], | |
| bbox_anchors_list[i], | |
| bbox_gts_list[i], | |
| anchor_weights_list[i], | |
| avg_factor=ga_avg_factor) | |
| losses_shape.append(loss_shape) | |
| return dict( | |
| loss_cls=losses_cls, | |
| loss_bbox=losses_bbox, | |
| loss_shape=losses_shape, | |
| loss_loc=losses_loc) | |
| def predict_by_feat(self, | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| shape_preds: List[Tensor], | |
| loc_preds: List[Tensor], | |
| batch_img_metas: List[dict], | |
| cfg: OptConfigType = None, | |
| rescale: bool = False) -> InstanceList: | |
| """Transform a batch of output features extracted from the head into | |
| bbox results. | |
| Args: | |
| cls_scores (list[Tensor]): Classification scores for all | |
| scale levels, each is a 4D-tensor, has shape | |
| (batch_size, num_priors * num_classes, H, W). | |
| bbox_preds (list[Tensor]): Box energies / deltas for all | |
| scale levels, each is a 4D-tensor, has shape | |
| (batch_size, num_priors * 4, H, W). | |
| shape_preds (list[Tensor]): shape predictions for each scale | |
| level with shape (N, 1, H, W). | |
| loc_preds (list[Tensor]): location predictions for each scale | |
| level with shape (N, num_anchors * 2, H, W). | |
| batch_img_metas (list[dict], Optional): Batch image meta info. | |
| Defaults to None. | |
| cfg (ConfigDict, optional): Test / postprocessing | |
| configuration, if None, test_cfg would be used. | |
| Defaults to None. | |
| rescale (bool): If True, return boxes in original image space. | |
| Defaults to False. | |
| Returns: | |
| list[:obj:`InstanceData`]: Object detection results of each image | |
| after the post process. Each item usually contains following keys. | |
| - scores (Tensor): Classification scores, has a shape | |
| (num_instance, ) | |
| - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). | |
| - bboxes (Tensor): Has a shape (num_instances, 4), the last | |
| dimension 4 arrange as (x1, y1, x2, y2). | |
| """ | |
| assert len(cls_scores) == len(bbox_preds) == len(shape_preds) == len( | |
| loc_preds) | |
| num_levels = len(cls_scores) | |
| featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
| device = cls_scores[0].device | |
| # get guided anchors | |
| _, guided_anchors, loc_masks = self.get_anchors( | |
| featmap_sizes, | |
| shape_preds, | |
| loc_preds, | |
| batch_img_metas, | |
| use_loc_filter=not self.training, | |
| device=device) | |
| result_list = [] | |
| for img_id in range(len(batch_img_metas)): | |
| cls_score_list = [ | |
| cls_scores[i][img_id].detach() for i in range(num_levels) | |
| ] | |
| bbox_pred_list = [ | |
| bbox_preds[i][img_id].detach() for i in range(num_levels) | |
| ] | |
| guided_anchor_list = [ | |
| guided_anchors[img_id][i].detach() for i in range(num_levels) | |
| ] | |
| loc_mask_list = [ | |
| loc_masks[img_id][i].detach() for i in range(num_levels) | |
| ] | |
| proposals = self._predict_by_feat_single( | |
| cls_scores=cls_score_list, | |
| bbox_preds=bbox_pred_list, | |
| mlvl_anchors=guided_anchor_list, | |
| mlvl_masks=loc_mask_list, | |
| img_meta=batch_img_metas[img_id], | |
| cfg=cfg, | |
| rescale=rescale) | |
| result_list.append(proposals) | |
| return result_list | |
| def _predict_by_feat_single(self, | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| mlvl_anchors: List[Tensor], | |
| mlvl_masks: List[Tensor], | |
| img_meta: dict, | |
| cfg: ConfigType, | |
| rescale: bool = False) -> InstanceData: | |
| """Transform a single image's features extracted from the head into | |
| bbox results. | |
| Args: | |
| cls_scores (list[Tensor]): Box scores from all scale | |
| levels of a single image, each item has shape | |
| (num_priors * num_classes, H, W). | |
| bbox_preds (list[Tensor]): Box energies / deltas from | |
| all scale levels of a single image, each item has shape | |
| (num_priors * 4, H, W). | |
| mlvl_anchors (list[Tensor]): Each element in the list is | |
| the anchors of a single level in feature pyramid. it has | |
| shape (num_priors, 4). | |
| mlvl_masks (list[Tensor]): Each element in the list is location | |
| masks of a single level. | |
| img_meta (dict): Image meta info. | |
| cfg (:obj:`ConfigDict` or dict): Test / postprocessing | |
| configuration, if None, test_cfg would be used. | |
| rescale (bool): If True, return boxes in original image space. | |
| Defaults to False. | |
| Returns: | |
| :obj:`InstanceData`: Detection results of each image | |
| after the post process. | |
| Each item usually contains following keys. | |
| - scores (Tensor): Classification scores, has a shape | |
| (num_instance, ) | |
| - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). | |
| - bboxes (Tensor): Has a shape (num_instances, 4), the last | |
| dimension 4 arrange as (x1, y1, x2, y2). | |
| """ | |
| cfg = self.test_cfg if cfg is None else cfg | |
| assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) | |
| mlvl_bbox_preds = [] | |
| mlvl_valid_anchors = [] | |
| mlvl_scores = [] | |
| for cls_score, bbox_pred, anchors, mask in zip(cls_scores, bbox_preds, | |
| mlvl_anchors, | |
| mlvl_masks): | |
| assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
| # if no location is kept, end. | |
| if mask.sum() == 0: | |
| continue | |
| # reshape scores and bbox_pred | |
| cls_score = cls_score.permute(1, 2, | |
| 0).reshape(-1, self.cls_out_channels) | |
| if self.use_sigmoid_cls: | |
| scores = cls_score.sigmoid() | |
| else: | |
| scores = cls_score.softmax(-1) | |
| bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) | |
| # filter scores, bbox_pred w.r.t. mask. | |
| # anchors are filtered in get_anchors() beforehand. | |
| scores = scores[mask, :] | |
| bbox_pred = bbox_pred[mask, :] | |
| if scores.dim() == 0: | |
| anchors = anchors.unsqueeze(0) | |
| scores = scores.unsqueeze(0) | |
| bbox_pred = bbox_pred.unsqueeze(0) | |
| # filter anchors, bbox_pred, scores w.r.t. scores | |
| nms_pre = cfg.get('nms_pre', -1) | |
| if nms_pre > 0 and scores.shape[0] > nms_pre: | |
| if self.use_sigmoid_cls: | |
| max_scores, _ = scores.max(dim=1) | |
| else: | |
| # remind that we set FG labels to [0, num_class-1] | |
| # since mmdet v2.0 | |
| # BG cat_id: num_class | |
| max_scores, _ = scores[:, :-1].max(dim=1) | |
| _, topk_inds = max_scores.topk(nms_pre) | |
| anchors = anchors[topk_inds, :] | |
| bbox_pred = bbox_pred[topk_inds, :] | |
| scores = scores[topk_inds, :] | |
| mlvl_bbox_preds.append(bbox_pred) | |
| mlvl_valid_anchors.append(anchors) | |
| mlvl_scores.append(scores) | |
| mlvl_bbox_preds = torch.cat(mlvl_bbox_preds) | |
| mlvl_anchors = torch.cat(mlvl_valid_anchors) | |
| mlvl_scores = torch.cat(mlvl_scores) | |
| mlvl_bboxes = self.bbox_coder.decode( | |
| mlvl_anchors, mlvl_bbox_preds, max_shape=img_meta['img_shape']) | |
| if rescale: | |
| assert img_meta.get('scale_factor') is not None | |
| mlvl_bboxes /= mlvl_bboxes.new_tensor( | |
| img_meta['scale_factor']).repeat((1, 2)) | |
| if self.use_sigmoid_cls: | |
| # Add a dummy background class to the backend when using sigmoid | |
| # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 | |
| # BG cat_id: num_class | |
| padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) | |
| mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) | |
| # multi class NMS | |
| det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores, | |
| cfg.score_thr, cfg.nms, | |
| cfg.max_per_img) | |
| results = InstanceData() | |
| results.bboxes = det_bboxes[:, :-1] | |
| results.scores = det_bboxes[:, -1] | |
| results.labels = det_labels | |
| return results | |