Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule, Scale, is_norm | |
| from mmengine.model import bias_init_with_prob, constant_init, normal_init | |
| from mmengine.structures import InstanceData | |
| from torch import Tensor | |
| from mmdet.registry import MODELS, TASK_UTILS | |
| from mmdet.structures.bbox import distance2bbox | |
| from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean | |
| from ..layers.transformer import inverse_sigmoid | |
| from ..task_modules import anchor_inside_flags | |
| from ..utils import (images_to_levels, multi_apply, sigmoid_geometric_mean, | |
| unmap) | |
| from .atss_head import ATSSHead | |
| class RTMDetHead(ATSSHead): | |
| """Detection Head of RTMDet. | |
| Args: | |
| num_classes (int): Number of categories excluding the background | |
| category. | |
| in_channels (int): Number of channels in the input feature map. | |
| with_objectness (bool): Whether to add an objectness branch. | |
| Defaults to True. | |
| act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer. | |
| Default: dict(type='ReLU') | |
| """ | |
| def __init__(self, | |
| num_classes: int, | |
| in_channels: int, | |
| with_objectness: bool = True, | |
| act_cfg: ConfigType = dict(type='ReLU'), | |
| **kwargs) -> None: | |
| self.act_cfg = act_cfg | |
| self.with_objectness = with_objectness | |
| super().__init__(num_classes, in_channels, **kwargs) | |
| if self.train_cfg: | |
| self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) | |
| def _init_layers(self): | |
| """Initialize layers of the head.""" | |
| self.cls_convs = nn.ModuleList() | |
| self.reg_convs = nn.ModuleList() | |
| for i in range(self.stacked_convs): | |
| chn = self.in_channels if i == 0 else self.feat_channels | |
| self.cls_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg)) | |
| self.reg_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg)) | |
| pred_pad_size = self.pred_kernel_size // 2 | |
| self.rtm_cls = nn.Conv2d( | |
| self.feat_channels, | |
| self.num_base_priors * self.cls_out_channels, | |
| self.pred_kernel_size, | |
| padding=pred_pad_size) | |
| self.rtm_reg = nn.Conv2d( | |
| self.feat_channels, | |
| self.num_base_priors * 4, | |
| self.pred_kernel_size, | |
| padding=pred_pad_size) | |
| if self.with_objectness: | |
| self.rtm_obj = nn.Conv2d( | |
| self.feat_channels, | |
| 1, | |
| self.pred_kernel_size, | |
| padding=pred_pad_size) | |
| self.scales = nn.ModuleList( | |
| [Scale(1.0) for _ in self.prior_generator.strides]) | |
| def init_weights(self) -> None: | |
| """Initialize weights of the head.""" | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| normal_init(m, mean=0, std=0.01) | |
| if is_norm(m): | |
| constant_init(m, 1) | |
| bias_cls = bias_init_with_prob(0.01) | |
| normal_init(self.rtm_cls, std=0.01, bias=bias_cls) | |
| normal_init(self.rtm_reg, std=0.01) | |
| if self.with_objectness: | |
| normal_init(self.rtm_obj, std=0.01, bias=bias_cls) | |
| def forward(self, feats: Tuple[Tensor, ...]) -> tuple: | |
| """Forward features from the upstream network. | |
| Args: | |
| feats (tuple[Tensor]): Features from the upstream network, each is | |
| a 4D-tensor. | |
| Returns: | |
| tuple: Usually a tuple of classification scores and bbox prediction | |
| - cls_scores (list[Tensor]): Classification scores for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * num_classes. | |
| - bbox_preds (list[Tensor]): Box energies / deltas for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * 4. | |
| """ | |
| cls_scores = [] | |
| bbox_preds = [] | |
| for idx, (x, scale, stride) in enumerate( | |
| zip(feats, self.scales, self.prior_generator.strides)): | |
| cls_feat = x | |
| reg_feat = x | |
| for cls_layer in self.cls_convs: | |
| cls_feat = cls_layer(cls_feat) | |
| cls_score = self.rtm_cls(cls_feat) | |
| for reg_layer in self.reg_convs: | |
| reg_feat = reg_layer(reg_feat) | |
| if self.with_objectness: | |
| objectness = self.rtm_obj(reg_feat) | |
| cls_score = inverse_sigmoid( | |
| sigmoid_geometric_mean(cls_score, objectness)) | |
| reg_dist = scale(self.rtm_reg(reg_feat).exp()).float() * stride[0] | |
| cls_scores.append(cls_score) | |
| bbox_preds.append(reg_dist) | |
| return tuple(cls_scores), tuple(bbox_preds) | |
| def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor, | |
| labels: Tensor, label_weights: Tensor, | |
| bbox_targets: Tensor, assign_metrics: Tensor, | |
| stride: List[int]): | |
| """Compute loss of a single scale level. | |
| Args: | |
| cls_score (Tensor): Box scores for each scale level | |
| Has shape (N, num_anchors * num_classes, H, W). | |
| bbox_pred (Tensor): Decoded bboxes for each scale | |
| level with shape (N, num_anchors * 4, H, W). | |
| labels (Tensor): Labels of each anchors with shape | |
| (N, num_total_anchors). | |
| label_weights (Tensor): Label weights of each anchor with shape | |
| (N, num_total_anchors). | |
| bbox_targets (Tensor): BBox regression targets of each anchor with | |
| shape (N, num_total_anchors, 4). | |
| assign_metrics (Tensor): Assign metrics with shape | |
| (N, num_total_anchors). | |
| stride (List[int]): Downsample stride of the feature map. | |
| Returns: | |
| dict[str, Tensor]: A dictionary of loss components. | |
| """ | |
| assert stride[0] == stride[1], 'h stride is not equal to w stride!' | |
| cls_score = cls_score.permute(0, 2, 3, 1).reshape( | |
| -1, self.cls_out_channels).contiguous() | |
| bbox_pred = bbox_pred.reshape(-1, 4) | |
| bbox_targets = bbox_targets.reshape(-1, 4) | |
| labels = labels.reshape(-1) | |
| assign_metrics = assign_metrics.reshape(-1) | |
| label_weights = label_weights.reshape(-1) | |
| targets = (labels, assign_metrics) | |
| loss_cls = self.loss_cls( | |
| cls_score, targets, label_weights, avg_factor=1.0) | |
| # FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
| bg_class_ind = self.num_classes | |
| pos_inds = ((labels >= 0) | |
| & (labels < bg_class_ind)).nonzero().squeeze(1) | |
| if len(pos_inds) > 0: | |
| pos_bbox_targets = bbox_targets[pos_inds] | |
| pos_bbox_pred = bbox_pred[pos_inds] | |
| pos_decode_bbox_pred = pos_bbox_pred | |
| pos_decode_bbox_targets = pos_bbox_targets | |
| # regression loss | |
| pos_bbox_weight = assign_metrics[pos_inds] | |
| loss_bbox = self.loss_bbox( | |
| pos_decode_bbox_pred, | |
| pos_decode_bbox_targets, | |
| weight=pos_bbox_weight, | |
| avg_factor=1.0) | |
| else: | |
| loss_bbox = bbox_pred.sum() * 0 | |
| pos_bbox_weight = bbox_targets.new_tensor(0.) | |
| return loss_cls, loss_bbox, assign_metrics.sum(), pos_bbox_weight.sum() | |
| def loss_by_feat(self, | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None): | |
| """Compute losses of the head. | |
| Args: | |
| cls_scores (list[Tensor]): Box scores for each scale level | |
| Has shape (N, num_anchors * num_classes, H, W) | |
| bbox_preds (list[Tensor]): Decoded box for each scale | |
| level with shape (N, num_anchors * 4, H, W) in | |
| [tl_x, tl_y, br_x, br_y] format. | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| Returns: | |
| dict[str, Tensor]: A dictionary of loss components. | |
| """ | |
| num_imgs = len(batch_img_metas) | |
| featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
| assert len(featmap_sizes) == self.prior_generator.num_levels | |
| device = cls_scores[0].device | |
| anchor_list, valid_flag_list = self.get_anchors( | |
| featmap_sizes, batch_img_metas, device=device) | |
| flatten_cls_scores = torch.cat([ | |
| cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, | |
| self.cls_out_channels) | |
| for cls_score in cls_scores | |
| ], 1) | |
| decoded_bboxes = [] | |
| for anchor, bbox_pred in zip(anchor_list[0], bbox_preds): | |
| anchor = anchor.reshape(-1, 4) | |
| bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) | |
| bbox_pred = distance2bbox(anchor, bbox_pred) | |
| decoded_bboxes.append(bbox_pred) | |
| flatten_bboxes = torch.cat(decoded_bboxes, 1) | |
| cls_reg_targets = self.get_targets( | |
| flatten_cls_scores, | |
| flatten_bboxes, | |
| anchor_list, | |
| valid_flag_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore=batch_gt_instances_ignore) | |
| (anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
| assign_metrics_list, sampling_results_list) = cls_reg_targets | |
| losses_cls, losses_bbox,\ | |
| cls_avg_factors, bbox_avg_factors = multi_apply( | |
| self.loss_by_feat_single, | |
| cls_scores, | |
| decoded_bboxes, | |
| labels_list, | |
| label_weights_list, | |
| bbox_targets_list, | |
| assign_metrics_list, | |
| self.prior_generator.strides) | |
| cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item() | |
| losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls)) | |
| bbox_avg_factor = reduce_mean( | |
| sum(bbox_avg_factors)).clamp_(min=1).item() | |
| losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox)) | |
| return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) | |
| def get_targets(self, | |
| cls_scores: Tensor, | |
| bbox_preds: Tensor, | |
| anchor_list: List[List[Tensor]], | |
| valid_flag_list: List[List[Tensor]], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None, | |
| unmap_outputs=True): | |
| """Compute regression and classification targets for anchors in | |
| multiple images. | |
| Args: | |
| cls_scores (Tensor): Classification predictions of images, | |
| a 3D-Tensor with shape [num_imgs, num_priors, num_classes]. | |
| bbox_preds (Tensor): Decoded bboxes predictions of one image, | |
| a 3D-Tensor with shape [num_imgs, num_priors, 4] in [tl_x, | |
| tl_y, br_x, br_y] format. | |
| anchor_list (list[list[Tensor]]): Multi level anchors of each | |
| image. The outer list indicates images, and the inner list | |
| corresponds to feature levels of the image. Each element of | |
| the inner list is a tensor of shape (num_anchors, 4). | |
| valid_flag_list (list[list[Tensor]]): Multi level valid flags of | |
| each image. The outer list indicates images, and the inner list | |
| corresponds to feature levels of the image. Each element of | |
| the inner list is a tensor of shape (num_anchors, ) | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| unmap_outputs (bool): Whether to map outputs back to the original | |
| set of anchors. Defaults to True. | |
| Returns: | |
| tuple: a tuple containing learning targets. | |
| - anchors_list (list[list[Tensor]]): Anchors of each level. | |
| - labels_list (list[Tensor]): Labels of each level. | |
| - label_weights_list (list[Tensor]): Label weights of each | |
| level. | |
| - bbox_targets_list (list[Tensor]): BBox targets of each level. | |
| - assign_metrics_list (list[Tensor]): alignment metrics of each | |
| level. | |
| """ | |
| num_imgs = len(batch_img_metas) | |
| assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
| # anchor number of multi levels | |
| num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
| # concat all level anchors and flags to a single tensor | |
| for i in range(num_imgs): | |
| assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
| anchor_list[i] = torch.cat(anchor_list[i]) | |
| valid_flag_list[i] = torch.cat(valid_flag_list[i]) | |
| # compute targets for each image | |
| if batch_gt_instances_ignore is None: | |
| batch_gt_instances_ignore = [None] * num_imgs | |
| # anchor_list: list(b * [-1, 4]) | |
| (all_anchors, all_labels, all_label_weights, all_bbox_targets, | |
| all_assign_metrics, sampling_results_list) = multi_apply( | |
| self._get_targets_single, | |
| cls_scores.detach(), | |
| bbox_preds.detach(), | |
| anchor_list, | |
| valid_flag_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore, | |
| unmap_outputs=unmap_outputs) | |
| # no valid anchors | |
| if any([labels is None for labels in all_labels]): | |
| return None | |
| # split targets to a list w.r.t. multiple levels | |
| anchors_list = images_to_levels(all_anchors, num_level_anchors) | |
| labels_list = images_to_levels(all_labels, num_level_anchors) | |
| label_weights_list = images_to_levels(all_label_weights, | |
| num_level_anchors) | |
| bbox_targets_list = images_to_levels(all_bbox_targets, | |
| num_level_anchors) | |
| assign_metrics_list = images_to_levels(all_assign_metrics, | |
| num_level_anchors) | |
| return (anchors_list, labels_list, label_weights_list, | |
| bbox_targets_list, assign_metrics_list, sampling_results_list) | |
| def _get_targets_single(self, | |
| cls_scores: Tensor, | |
| bbox_preds: Tensor, | |
| flat_anchors: Tensor, | |
| valid_flags: Tensor, | |
| gt_instances: InstanceData, | |
| img_meta: dict, | |
| gt_instances_ignore: Optional[InstanceData] = None, | |
| unmap_outputs=True): | |
| """Compute regression, classification targets for anchors in a single | |
| image. | |
| Args: | |
| cls_scores (list(Tensor)): Box scores for each image. | |
| bbox_preds (list(Tensor)): Box energies / deltas for each image. | |
| flat_anchors (Tensor): Multi-level anchors of the image, which are | |
| concatenated into a single tensor of shape (num_anchors ,4) | |
| valid_flags (Tensor): Multi level valid flags of the image, | |
| which are concatenated into a single tensor of | |
| shape (num_anchors,). | |
| gt_instances (:obj:`InstanceData`): Ground truth of instance | |
| annotations. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| img_meta (dict): Meta information for current image. | |
| gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
| to be ignored during training. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| unmap_outputs (bool): Whether to map outputs back to the original | |
| set of anchors. Defaults to True. | |
| Returns: | |
| tuple: N is the number of total anchors in the image. | |
| - anchors (Tensor): All anchors in the image with shape (N, 4). | |
| - labels (Tensor): Labels of all anchors in the image with shape | |
| (N,). | |
| - label_weights (Tensor): Label weights of all anchor in the | |
| image with shape (N,). | |
| - bbox_targets (Tensor): BBox targets of all anchors in the | |
| image with shape (N, 4). | |
| - norm_alignment_metrics (Tensor): Normalized alignment metrics | |
| of all priors in the image with shape (N,). | |
| """ | |
| inside_flags = anchor_inside_flags(flat_anchors, valid_flags, | |
| img_meta['img_shape'][:2], | |
| self.train_cfg['allowed_border']) | |
| if not inside_flags.any(): | |
| return (None, ) * 7 | |
| # assign gt and sample anchors | |
| anchors = flat_anchors[inside_flags, :] | |
| pred_instances = InstanceData( | |
| scores=cls_scores[inside_flags, :], | |
| bboxes=bbox_preds[inside_flags, :], | |
| priors=anchors) | |
| assign_result = self.assigner.assign(pred_instances, gt_instances, | |
| gt_instances_ignore) | |
| sampling_result = self.sampler.sample(assign_result, pred_instances, | |
| gt_instances) | |
| num_valid_anchors = anchors.shape[0] | |
| bbox_targets = torch.zeros_like(anchors) | |
| labels = anchors.new_full((num_valid_anchors, ), | |
| self.num_classes, | |
| dtype=torch.long) | |
| label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) | |
| assign_metrics = anchors.new_zeros( | |
| num_valid_anchors, dtype=torch.float) | |
| pos_inds = sampling_result.pos_inds | |
| neg_inds = sampling_result.neg_inds | |
| if len(pos_inds) > 0: | |
| # point-based | |
| pos_bbox_targets = sampling_result.pos_gt_bboxes | |
| bbox_targets[pos_inds, :] = pos_bbox_targets | |
| labels[pos_inds] = sampling_result.pos_gt_labels | |
| if self.train_cfg['pos_weight'] <= 0: | |
| label_weights[pos_inds] = 1.0 | |
| else: | |
| label_weights[pos_inds] = self.train_cfg['pos_weight'] | |
| if len(neg_inds) > 0: | |
| label_weights[neg_inds] = 1.0 | |
| class_assigned_gt_inds = torch.unique( | |
| sampling_result.pos_assigned_gt_inds) | |
| for gt_inds in class_assigned_gt_inds: | |
| gt_class_inds = pos_inds[sampling_result.pos_assigned_gt_inds == | |
| gt_inds] | |
| assign_metrics[gt_class_inds] = assign_result.max_overlaps[ | |
| gt_class_inds] | |
| # map up to original set of anchors | |
| if unmap_outputs: | |
| num_total_anchors = flat_anchors.size(0) | |
| anchors = unmap(anchors, num_total_anchors, inside_flags) | |
| labels = unmap( | |
| labels, num_total_anchors, inside_flags, fill=self.num_classes) | |
| label_weights = unmap(label_weights, num_total_anchors, | |
| inside_flags) | |
| bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) | |
| assign_metrics = unmap(assign_metrics, num_total_anchors, | |
| inside_flags) | |
| return (anchors, labels, label_weights, bbox_targets, assign_metrics, | |
| sampling_result) | |
| def get_anchors(self, | |
| featmap_sizes: List[tuple], | |
| batch_img_metas: List[dict], | |
| device: Union[torch.device, str] = 'cuda') \ | |
| -> Tuple[List[List[Tensor]], List[List[Tensor]]]: | |
| """Get anchors according to feature map sizes. | |
| Args: | |
| featmap_sizes (list[tuple]): Multi-level feature map sizes. | |
| batch_img_metas (list[dict]): Image meta info. | |
| device (torch.device or str): Device for returned tensors. | |
| Defaults to cuda. | |
| Returns: | |
| tuple: | |
| - anchor_list (list[list[Tensor]]): Anchors of each image. | |
| - valid_flag_list (list[list[Tensor]]): Valid flags of each | |
| image. | |
| """ | |
| num_imgs = len(batch_img_metas) | |
| # since feature map sizes of all images are the same, we only compute | |
| # anchors for one time | |
| multi_level_anchors = self.prior_generator.grid_priors( | |
| featmap_sizes, device=device, with_stride=True) | |
| anchor_list = [multi_level_anchors for _ in range(num_imgs)] | |
| # for each image, we compute valid flags of multi level anchors | |
| valid_flag_list = [] | |
| for img_id, img_meta in enumerate(batch_img_metas): | |
| multi_level_flags = self.prior_generator.valid_flags( | |
| featmap_sizes, img_meta['pad_shape'], device) | |
| valid_flag_list.append(multi_level_flags) | |
| return anchor_list, valid_flag_list | |
| class RTMDetSepBNHead(RTMDetHead): | |
| """RTMDetHead with separated BN layers and shared conv layers. | |
| Args: | |
| num_classes (int): Number of categories excluding the background | |
| category. | |
| in_channels (int): Number of channels in the input feature map. | |
| share_conv (bool): Whether to share conv layers between stages. | |
| Defaults to True. | |
| use_depthwise (bool): Whether to use depthwise separable convolution in | |
| head. Defaults to False. | |
| norm_cfg (:obj:`ConfigDict` or dict)): Config dict for normalization | |
| layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001). | |
| act_cfg (:obj:`ConfigDict` or dict)): Config dict for activation layer. | |
| Defaults to dict(type='SiLU'). | |
| pred_kernel_size (int): Kernel size of prediction layer. Defaults to 1. | |
| """ | |
| def __init__(self, | |
| num_classes: int, | |
| in_channels: int, | |
| share_conv: bool = True, | |
| use_depthwise: bool = False, | |
| norm_cfg: ConfigType = dict( | |
| type='BN', momentum=0.03, eps=0.001), | |
| act_cfg: ConfigType = dict(type='SiLU'), | |
| pred_kernel_size: int = 1, | |
| exp_on_reg=False, | |
| **kwargs) -> None: | |
| self.share_conv = share_conv | |
| self.exp_on_reg = exp_on_reg | |
| self.use_depthwise = use_depthwise | |
| super().__init__( | |
| num_classes, | |
| in_channels, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg, | |
| pred_kernel_size=pred_kernel_size, | |
| **kwargs) | |
| def _init_layers(self) -> None: | |
| """Initialize layers of the head.""" | |
| conv = DepthwiseSeparableConvModule \ | |
| if self.use_depthwise else ConvModule | |
| self.cls_convs = nn.ModuleList() | |
| self.reg_convs = nn.ModuleList() | |
| self.rtm_cls = nn.ModuleList() | |
| self.rtm_reg = nn.ModuleList() | |
| if self.with_objectness: | |
| self.rtm_obj = nn.ModuleList() | |
| for n in range(len(self.prior_generator.strides)): | |
| cls_convs = nn.ModuleList() | |
| reg_convs = nn.ModuleList() | |
| for i in range(self.stacked_convs): | |
| chn = self.in_channels if i == 0 else self.feat_channels | |
| cls_convs.append( | |
| conv( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg)) | |
| reg_convs.append( | |
| conv( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg)) | |
| self.cls_convs.append(cls_convs) | |
| self.reg_convs.append(reg_convs) | |
| self.rtm_cls.append( | |
| nn.Conv2d( | |
| self.feat_channels, | |
| self.num_base_priors * self.cls_out_channels, | |
| self.pred_kernel_size, | |
| padding=self.pred_kernel_size // 2)) | |
| self.rtm_reg.append( | |
| nn.Conv2d( | |
| self.feat_channels, | |
| self.num_base_priors * 4, | |
| self.pred_kernel_size, | |
| padding=self.pred_kernel_size // 2)) | |
| if self.with_objectness: | |
| self.rtm_obj.append( | |
| nn.Conv2d( | |
| self.feat_channels, | |
| 1, | |
| self.pred_kernel_size, | |
| padding=self.pred_kernel_size // 2)) | |
| if self.share_conv: | |
| for n in range(len(self.prior_generator.strides)): | |
| for i in range(self.stacked_convs): | |
| self.cls_convs[n][i].conv = self.cls_convs[0][i].conv | |
| self.reg_convs[n][i].conv = self.reg_convs[0][i].conv | |
| def init_weights(self) -> None: | |
| """Initialize weights of the head.""" | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| normal_init(m, mean=0, std=0.01) | |
| if is_norm(m): | |
| constant_init(m, 1) | |
| bias_cls = bias_init_with_prob(0.01) | |
| for rtm_cls, rtm_reg in zip(self.rtm_cls, self.rtm_reg): | |
| normal_init(rtm_cls, std=0.01, bias=bias_cls) | |
| normal_init(rtm_reg, std=0.01) | |
| if self.with_objectness: | |
| for rtm_obj in self.rtm_obj: | |
| normal_init(rtm_obj, std=0.01, bias=bias_cls) | |
| def forward(self, feats: Tuple[Tensor, ...]) -> tuple: | |
| """Forward features from the upstream network. | |
| Args: | |
| feats (tuple[Tensor]): Features from the upstream network, each is | |
| a 4D-tensor. | |
| Returns: | |
| tuple: Usually a tuple of classification scores and bbox prediction | |
| - cls_scores (tuple[Tensor]): Classification scores for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_anchors * num_classes. | |
| - bbox_preds (tuple[Tensor]): Box energies / deltas for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_anchors * 4. | |
| """ | |
| cls_scores = [] | |
| bbox_preds = [] | |
| for idx, (x, stride) in enumerate( | |
| zip(feats, self.prior_generator.strides)): | |
| cls_feat = x | |
| reg_feat = x | |
| for cls_layer in self.cls_convs[idx]: | |
| cls_feat = cls_layer(cls_feat) | |
| cls_score = self.rtm_cls[idx](cls_feat) | |
| for reg_layer in self.reg_convs[idx]: | |
| reg_feat = reg_layer(reg_feat) | |
| if self.with_objectness: | |
| objectness = self.rtm_obj[idx](reg_feat) | |
| cls_score = inverse_sigmoid( | |
| sigmoid_geometric_mean(cls_score, objectness)) | |
| if self.exp_on_reg: | |
| reg_dist = self.rtm_reg[idx](reg_feat).exp() * stride[0] | |
| else: | |
| reg_dist = self.rtm_reg[idx](reg_feat) * stride[0] | |
| cls_scores.append(cls_score) | |
| bbox_preds.append(reg_dist) | |
| return tuple(cls_scores), tuple(bbox_preds) | |