Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import warnings | |
| from typing import List, Optional, Tuple | |
| import mmcv | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from mmcv.cnn import ConvModule | |
| from mmengine.model import BaseModule | |
| from mmengine.structures import InstanceData | |
| from torch import Tensor | |
| from mmdet.models.utils.misc import floordiv | |
| from mmdet.registry import MODELS | |
| from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptConfigType | |
| from ..layers import mask_matrix_nms | |
| from ..utils import center_of_mass, generate_coordinate, multi_apply | |
| from .solo_head import SOLOHead | |
| from ...structures.mask import mask2bbox | |
| class MaskFeatModule(BaseModule): | |
| """SOLOv2 mask feature map branch used in `SOLOv2: Dynamic and Fast | |
| Instance Segmentation. <https://arxiv.org/pdf/2003.10152>`_ | |
| Args: | |
| in_channels (int): Number of channels in the input feature map. | |
| feat_channels (int): Number of hidden channels of the mask feature | |
| map branch. | |
| start_level (int): The starting feature map level from RPN that | |
| will be used to predict the mask feature map. | |
| end_level (int): The ending feature map level from rpn that | |
| will be used to predict the mask feature map. | |
| out_channels (int): Number of output channels of the mask feature | |
| map branch. This is the channel count of the mask | |
| feature map that to be dynamically convolved with the predicted | |
| kernel. | |
| mask_stride (int): Downsample factor of the mask feature map output. | |
| Defaults to 4. | |
| conv_cfg (dict): Config dict for convolution layer. Default: None. | |
| norm_cfg (dict): Config dict for normalization layer. Default: None. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| feat_channels: int, | |
| start_level: int, | |
| end_level: int, | |
| out_channels: int, | |
| mask_stride: int = 4, | |
| conv_cfg: OptConfigType = None, | |
| norm_cfg: OptConfigType = None, | |
| init_cfg: MultiConfig = [ | |
| dict(type='Normal', layer='Conv2d', std=0.01) | |
| ] | |
| ) -> None: | |
| super().__init__(init_cfg=init_cfg) | |
| self.in_channels = in_channels | |
| self.feat_channels = feat_channels | |
| self.start_level = start_level | |
| self.end_level = end_level | |
| self.mask_stride = mask_stride | |
| assert start_level >= 0 and end_level >= start_level | |
| self.out_channels = out_channels | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self._init_layers() | |
| self.fp16_enabled = False | |
| def _init_layers(self) -> None: | |
| """Initialize layers of the head.""" | |
| self.convs_all_levels = nn.ModuleList() | |
| for i in range(self.start_level, self.end_level + 1): | |
| convs_per_level = nn.Sequential() | |
| if i == 0: | |
| convs_per_level.add_module( | |
| f'conv{i}', | |
| ConvModule( | |
| self.in_channels, | |
| self.feat_channels, | |
| 3, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| inplace=False)) | |
| self.convs_all_levels.append(convs_per_level) | |
| continue | |
| for j in range(i): | |
| if j == 0: | |
| if i == self.end_level: | |
| chn = self.in_channels + 2 | |
| else: | |
| chn = self.in_channels | |
| convs_per_level.add_module( | |
| f'conv{j}', | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| inplace=False)) | |
| convs_per_level.add_module( | |
| f'upsample{j}', | |
| nn.Upsample( | |
| scale_factor=2, | |
| mode='bilinear', | |
| align_corners=False)) | |
| continue | |
| convs_per_level.add_module( | |
| f'conv{j}', | |
| ConvModule( | |
| self.feat_channels, | |
| self.feat_channels, | |
| 3, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| inplace=False)) | |
| convs_per_level.add_module( | |
| f'upsample{j}', | |
| nn.Upsample( | |
| scale_factor=2, mode='bilinear', align_corners=False)) | |
| self.convs_all_levels.append(convs_per_level) | |
| self.conv_pred = ConvModule( | |
| self.feat_channels, | |
| self.out_channels, | |
| 1, | |
| padding=0, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg) | |
| def forward(self, x: Tuple[Tensor]) -> Tensor: | |
| """Forward features from the upstream network. | |
| Args: | |
| x (tuple[Tensor]): Features from the upstream network, each is | |
| a 4D-tensor. | |
| Returns: | |
| Tensor: The predicted mask feature map. | |
| """ | |
| inputs = x[self.start_level:self.end_level + 1] | |
| assert len(inputs) == (self.end_level - self.start_level + 1) | |
| feature_add_all_level = self.convs_all_levels[0](inputs[0]) | |
| for i in range(1, len(inputs)): | |
| input_p = inputs[i] | |
| if i == len(inputs) - 1: | |
| coord_feat = generate_coordinate(input_p.size(), | |
| input_p.device) | |
| input_p = torch.cat([input_p, coord_feat], 1) | |
| feature_add_all_level = feature_add_all_level + \ | |
| self.convs_all_levels[i](input_p) | |
| feature_pred = self.conv_pred(feature_add_all_level) | |
| return feature_pred | |
| class SOLOV2Head(SOLOHead): | |
| """SOLOv2 mask head used in `SOLOv2: Dynamic and Fast Instance | |
| Segmentation. <https://arxiv.org/pdf/2003.10152>`_ | |
| Args: | |
| mask_feature_head (dict): Config of SOLOv2MaskFeatHead. | |
| dynamic_conv_size (int): Dynamic Conv kernel size. Defaults to 1. | |
| dcn_cfg (dict): Dcn conv configurations in kernel_convs and cls_conv. | |
| Defaults to None. | |
| dcn_apply_to_all_conv (bool): Whether to use dcn in every layer of | |
| kernel_convs and cls_convs, or only the last layer. It shall be set | |
| `True` for the normal version of SOLOv2 and `False` for the | |
| light-weight version. Defaults to True. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| """ | |
| def __init__(self, | |
| *args, | |
| mask_feature_head: ConfigType, | |
| dynamic_conv_size: int = 1, | |
| dcn_cfg: OptConfigType = None, | |
| dcn_apply_to_all_conv: bool = True, | |
| init_cfg: MultiConfig = [ | |
| dict(type='Normal', layer='Conv2d', std=0.01), | |
| dict( | |
| type='Normal', | |
| std=0.01, | |
| bias_prob=0.01, | |
| override=dict(name='conv_cls')) | |
| ], | |
| **kwargs) -> None: | |
| assert dcn_cfg is None or isinstance(dcn_cfg, dict) | |
| self.dcn_cfg = dcn_cfg | |
| self.with_dcn = dcn_cfg is not None | |
| self.dcn_apply_to_all_conv = dcn_apply_to_all_conv | |
| self.dynamic_conv_size = dynamic_conv_size | |
| mask_out_channels = mask_feature_head.get('out_channels') | |
| self.kernel_out_channels = \ | |
| mask_out_channels * self.dynamic_conv_size * self.dynamic_conv_size | |
| super().__init__(*args, init_cfg=init_cfg, **kwargs) | |
| # update the in_channels of mask_feature_head | |
| if mask_feature_head.get('in_channels', None) is not None: | |
| if mask_feature_head.in_channels != self.in_channels: | |
| warnings.warn('The `in_channels` of SOLOv2MaskFeatHead and ' | |
| 'SOLOv2Head should be same, changing ' | |
| 'mask_feature_head.in_channels to ' | |
| f'{self.in_channels}') | |
| mask_feature_head.update(in_channels=self.in_channels) | |
| else: | |
| mask_feature_head.update(in_channels=self.in_channels) | |
| self.mask_feature_head = MaskFeatModule(**mask_feature_head) | |
| self.mask_stride = self.mask_feature_head.mask_stride | |
| self.fp16_enabled = False | |
| def _init_layers(self) -> None: | |
| """Initialize layers of the head.""" | |
| self.cls_convs = nn.ModuleList() | |
| self.kernel_convs = nn.ModuleList() | |
| conv_cfg = None | |
| for i in range(self.stacked_convs): | |
| if self.with_dcn: | |
| if self.dcn_apply_to_all_conv: | |
| conv_cfg = self.dcn_cfg | |
| elif i == self.stacked_convs - 1: | |
| # light head | |
| conv_cfg = self.dcn_cfg | |
| chn = self.in_channels + 2 if i == 0 else self.feat_channels | |
| self.kernel_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| bias=self.norm_cfg is None)) | |
| chn = self.in_channels if i == 0 else self.feat_channels | |
| self.cls_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| bias=self.norm_cfg is None)) | |
| self.conv_cls = nn.Conv2d( | |
| self.feat_channels, self.cls_out_channels, 3, padding=1) | |
| self.conv_kernel = nn.Conv2d( | |
| self.feat_channels, self.kernel_out_channels, 3, padding=1) | |
| def forward(self, x): | |
| """Forward features from the upstream network. | |
| Args: | |
| x (tuple[Tensor]): Features from the upstream network, each is | |
| a 4D-tensor. | |
| Returns: | |
| tuple: A tuple of classification scores, mask prediction, | |
| and mask features. | |
| - mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel | |
| prediction. The kernel is used to generate instance | |
| segmentation masks by dynamic convolution. Each element in | |
| the list has shape | |
| (batch_size, kernel_out_channels, num_grids, num_grids). | |
| - mlvl_cls_preds (list[Tensor]): Multi-level scores. Each | |
| element in the list has shape | |
| (batch_size, num_classes, num_grids, num_grids). | |
| - mask_feats (Tensor): Unified mask feature map used to | |
| generate instance segmentation masks by dynamic convolution. | |
| Has shape (batch_size, mask_out_channels, h, w). | |
| """ | |
| assert len(x) == self.num_levels | |
| mask_feats = self.mask_feature_head(x) | |
| ins_kernel_feats = self.resize_feats(x) | |
| mlvl_kernel_preds = [] | |
| mlvl_cls_preds = [] | |
| for i in range(self.num_levels): | |
| ins_kernel_feat = ins_kernel_feats[i] | |
| # ins branch | |
| # concat coord | |
| coord_feat = generate_coordinate(ins_kernel_feat.size(), | |
| ins_kernel_feat.device) | |
| ins_kernel_feat = torch.cat([ins_kernel_feat, coord_feat], 1) | |
| # kernel branch | |
| kernel_feat = ins_kernel_feat | |
| kernel_feat = F.interpolate( | |
| kernel_feat, | |
| size=self.num_grids[i], | |
| mode='bilinear', | |
| align_corners=False) | |
| cate_feat = kernel_feat[:, :-2, :, :] | |
| kernel_feat = kernel_feat.contiguous() | |
| for i, kernel_conv in enumerate(self.kernel_convs): | |
| kernel_feat = kernel_conv(kernel_feat) | |
| kernel_pred = self.conv_kernel(kernel_feat) | |
| # cate branch | |
| cate_feat = cate_feat.contiguous() | |
| for i, cls_conv in enumerate(self.cls_convs): | |
| cate_feat = cls_conv(cate_feat) | |
| cate_pred = self.conv_cls(cate_feat) | |
| mlvl_kernel_preds.append(kernel_pred) | |
| mlvl_cls_preds.append(cate_pred) | |
| return mlvl_kernel_preds, mlvl_cls_preds, mask_feats | |
| def _get_targets_single(self, | |
| gt_instances: InstanceData, | |
| featmap_sizes: Optional[list] = None) -> tuple: | |
| """Compute targets for predictions of single image. | |
| Args: | |
| gt_instances (:obj:`InstanceData`): Ground truth of instance | |
| annotations. It should includes ``bboxes``, ``labels``, | |
| and ``masks`` attributes. | |
| featmap_sizes (list[:obj:`torch.size`]): Size of each | |
| feature map from feature pyramid, each element | |
| means (feat_h, feat_w). Defaults to None. | |
| Returns: | |
| Tuple: Usually returns a tuple containing targets for predictions. | |
| - mlvl_pos_mask_targets (list[Tensor]): Each element represent | |
| the binary mask targets for positive points in this | |
| level, has shape (num_pos, out_h, out_w). | |
| - mlvl_labels (list[Tensor]): Each element is | |
| classification labels for all | |
| points in this level, has shape | |
| (num_grid, num_grid). | |
| - mlvl_pos_masks (list[Tensor]): Each element is | |
| a `BoolTensor` to represent whether the | |
| corresponding point in single level | |
| is positive, has shape (num_grid **2). | |
| - mlvl_pos_indexes (list[list]): Each element | |
| in the list contains the positive index in | |
| corresponding level, has shape (num_pos). | |
| """ | |
| gt_labels = gt_instances.labels | |
| device = gt_labels.device | |
| gt_bboxes = gt_instances.bboxes | |
| gt_areas = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) * | |
| (gt_bboxes[:, 3] - gt_bboxes[:, 1])) | |
| gt_masks = gt_instances.masks.to_tensor( | |
| dtype=torch.bool, device=device) | |
| mlvl_pos_mask_targets = [] | |
| mlvl_pos_indexes = [] | |
| mlvl_labels = [] | |
| mlvl_pos_masks = [] | |
| for (lower_bound, upper_bound), num_grid \ | |
| in zip(self.scale_ranges, self.num_grids): | |
| mask_target = [] | |
| # FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
| pos_index = [] | |
| labels = torch.zeros([num_grid, num_grid], | |
| dtype=torch.int64, | |
| device=device) + self.num_classes | |
| pos_mask = torch.zeros([num_grid**2], | |
| dtype=torch.bool, | |
| device=device) | |
| gt_inds = ((gt_areas >= lower_bound) & | |
| (gt_areas <= upper_bound)).nonzero().flatten() | |
| if len(gt_inds) == 0: | |
| mlvl_pos_mask_targets.append( | |
| torch.zeros([0, featmap_sizes[0], featmap_sizes[1]], | |
| dtype=torch.uint8, | |
| device=device)) | |
| mlvl_labels.append(labels) | |
| mlvl_pos_masks.append(pos_mask) | |
| mlvl_pos_indexes.append([]) | |
| continue | |
| hit_gt_bboxes = gt_bboxes[gt_inds] | |
| hit_gt_labels = gt_labels[gt_inds] | |
| hit_gt_masks = gt_masks[gt_inds, ...] | |
| pos_w_ranges = 0.5 * (hit_gt_bboxes[:, 2] - | |
| hit_gt_bboxes[:, 0]) * self.pos_scale | |
| pos_h_ranges = 0.5 * (hit_gt_bboxes[:, 3] - | |
| hit_gt_bboxes[:, 1]) * self.pos_scale | |
| # Make sure hit_gt_masks has a value | |
| valid_mask_flags = hit_gt_masks.sum(dim=-1).sum(dim=-1) > 0 | |
| for gt_mask, gt_label, pos_h_range, pos_w_range, \ | |
| valid_mask_flag in \ | |
| zip(hit_gt_masks, hit_gt_labels, pos_h_ranges, | |
| pos_w_ranges, valid_mask_flags): | |
| if not valid_mask_flag: | |
| continue | |
| upsampled_size = (featmap_sizes[0] * self.mask_stride, | |
| featmap_sizes[1] * self.mask_stride) | |
| center_h, center_w = center_of_mass(gt_mask) | |
| coord_w = int( | |
| floordiv((center_w / upsampled_size[1]), (1. / num_grid), | |
| rounding_mode='trunc')) | |
| coord_h = int( | |
| floordiv((center_h / upsampled_size[0]), (1. / num_grid), | |
| rounding_mode='trunc')) | |
| # left, top, right, down | |
| top_box = max( | |
| 0, | |
| int( | |
| floordiv( | |
| (center_h - pos_h_range) / upsampled_size[0], | |
| (1. / num_grid), | |
| rounding_mode='trunc'))) | |
| down_box = min( | |
| num_grid - 1, | |
| int( | |
| floordiv( | |
| (center_h + pos_h_range) / upsampled_size[0], | |
| (1. / num_grid), | |
| rounding_mode='trunc'))) | |
| left_box = max( | |
| 0, | |
| int( | |
| floordiv( | |
| (center_w - pos_w_range) / upsampled_size[1], | |
| (1. / num_grid), | |
| rounding_mode='trunc'))) | |
| right_box = min( | |
| num_grid - 1, | |
| int( | |
| floordiv( | |
| (center_w + pos_w_range) / upsampled_size[1], | |
| (1. / num_grid), | |
| rounding_mode='trunc'))) | |
| top = max(top_box, coord_h - 1) | |
| down = min(down_box, coord_h + 1) | |
| left = max(coord_w - 1, left_box) | |
| right = min(right_box, coord_w + 1) | |
| labels[top:(down + 1), left:(right + 1)] = gt_label | |
| # ins | |
| gt_mask = np.uint8(gt_mask.cpu().numpy()) | |
| # Follow the original implementation, F.interpolate is | |
| # different from cv2 and opencv | |
| gt_mask = mmcv.imrescale(gt_mask, scale=1. / self.mask_stride) | |
| gt_mask = torch.from_numpy(gt_mask).to(device=device) | |
| for i in range(top, down + 1): | |
| for j in range(left, right + 1): | |
| index = int(i * num_grid + j) | |
| this_mask_target = torch.zeros( | |
| [featmap_sizes[0], featmap_sizes[1]], | |
| dtype=torch.uint8, | |
| device=device) | |
| this_mask_target[:gt_mask.shape[0], :gt_mask. | |
| shape[1]] = gt_mask | |
| mask_target.append(this_mask_target) | |
| pos_mask[index] = True | |
| pos_index.append(index) | |
| if len(mask_target) == 0: | |
| mask_target = torch.zeros( | |
| [0, featmap_sizes[0], featmap_sizes[1]], | |
| dtype=torch.uint8, | |
| device=device) | |
| else: | |
| mask_target = torch.stack(mask_target, 0) | |
| mlvl_pos_mask_targets.append(mask_target) | |
| mlvl_labels.append(labels) | |
| mlvl_pos_masks.append(pos_mask) | |
| mlvl_pos_indexes.append(pos_index) | |
| return (mlvl_pos_mask_targets, mlvl_labels, mlvl_pos_masks, | |
| mlvl_pos_indexes) | |
| def loss_by_feat(self, mlvl_kernel_preds: List[Tensor], | |
| mlvl_cls_preds: List[Tensor], mask_feats: Tensor, | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], **kwargs) -> dict: | |
| """Calculate the loss based on the features extracted by the mask head. | |
| Args: | |
| mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel | |
| prediction. The kernel is used to generate instance | |
| segmentation masks by dynamic convolution. Each element in the | |
| list has shape | |
| (batch_size, kernel_out_channels, num_grids, num_grids). | |
| mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element | |
| in the list has shape | |
| (batch_size, num_classes, num_grids, num_grids). | |
| mask_feats (Tensor): Unified mask feature map used to generate | |
| instance segmentation masks by dynamic convolution. Has shape | |
| (batch_size, mask_out_channels, h, w). | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes``, ``masks``, | |
| and ``labels`` attributes. | |
| batch_img_metas (list[dict]): Meta information of multiple images. | |
| Returns: | |
| dict[str, Tensor]: A dictionary of loss components. | |
| """ | |
| featmap_sizes = mask_feats.size()[-2:] | |
| pos_mask_targets, labels, pos_masks, pos_indexes = multi_apply( | |
| self._get_targets_single, | |
| batch_gt_instances, | |
| featmap_sizes=featmap_sizes) | |
| mlvl_mask_targets = [ | |
| torch.cat(lvl_mask_targets, 0) | |
| for lvl_mask_targets in zip(*pos_mask_targets) | |
| ] | |
| mlvl_pos_kernel_preds = [] | |
| for lvl_kernel_preds, lvl_pos_indexes in zip(mlvl_kernel_preds, | |
| zip(*pos_indexes)): | |
| lvl_pos_kernel_preds = [] | |
| for img_lvl_kernel_preds, img_lvl_pos_indexes in zip( | |
| lvl_kernel_preds, lvl_pos_indexes): | |
| img_lvl_pos_kernel_preds = img_lvl_kernel_preds.view( | |
| img_lvl_kernel_preds.shape[0], -1)[:, img_lvl_pos_indexes] | |
| lvl_pos_kernel_preds.append(img_lvl_pos_kernel_preds) | |
| mlvl_pos_kernel_preds.append(lvl_pos_kernel_preds) | |
| # make multilevel mlvl_mask_pred | |
| mlvl_mask_preds = [] | |
| for lvl_pos_kernel_preds in mlvl_pos_kernel_preds: | |
| lvl_mask_preds = [] | |
| for img_id, img_lvl_pos_kernel_pred in enumerate( | |
| lvl_pos_kernel_preds): | |
| if img_lvl_pos_kernel_pred.size()[-1] == 0: | |
| continue | |
| img_mask_feats = mask_feats[[img_id]] | |
| h, w = img_mask_feats.shape[-2:] | |
| num_kernel = img_lvl_pos_kernel_pred.shape[1] | |
| img_lvl_mask_pred = F.conv2d( | |
| img_mask_feats, | |
| img_lvl_pos_kernel_pred.permute(1, 0).view( | |
| num_kernel, -1, self.dynamic_conv_size, | |
| self.dynamic_conv_size), | |
| stride=1).view(-1, h, w) | |
| lvl_mask_preds.append(img_lvl_mask_pred) | |
| if len(lvl_mask_preds) == 0: | |
| lvl_mask_preds = None | |
| else: | |
| lvl_mask_preds = torch.cat(lvl_mask_preds, 0) | |
| mlvl_mask_preds.append(lvl_mask_preds) | |
| # dice loss | |
| num_pos = 0 | |
| for img_pos_masks in pos_masks: | |
| for lvl_img_pos_masks in img_pos_masks: | |
| # Fix `Tensor` object has no attribute `count_nonzero()` | |
| # in PyTorch 1.6, the type of `lvl_img_pos_masks` | |
| # should be `torch.bool`. | |
| num_pos += lvl_img_pos_masks.nonzero().numel() | |
| loss_mask = [] | |
| for lvl_mask_preds, lvl_mask_targets in zip(mlvl_mask_preds, | |
| mlvl_mask_targets): | |
| if lvl_mask_preds is None: | |
| continue | |
| loss_mask.append( | |
| self.loss_mask( | |
| lvl_mask_preds, | |
| lvl_mask_targets, | |
| reduction_override='none')) | |
| if num_pos > 0: | |
| loss_mask = torch.cat(loss_mask).sum() / num_pos | |
| else: | |
| loss_mask = mask_feats.sum() * 0 | |
| # cate | |
| flatten_labels = [ | |
| torch.cat( | |
| [img_lvl_labels.flatten() for img_lvl_labels in lvl_labels]) | |
| for lvl_labels in zip(*labels) | |
| ] | |
| flatten_labels = torch.cat(flatten_labels) | |
| flatten_cls_preds = [ | |
| lvl_cls_preds.permute(0, 2, 3, 1).reshape(-1, self.num_classes) | |
| for lvl_cls_preds in mlvl_cls_preds | |
| ] | |
| flatten_cls_preds = torch.cat(flatten_cls_preds) | |
| loss_cls = self.loss_cls( | |
| flatten_cls_preds, flatten_labels, avg_factor=num_pos + 1) | |
| return dict(loss_mask=loss_mask, loss_cls=loss_cls) | |
| def predict_by_feat(self, mlvl_kernel_preds: List[Tensor], | |
| mlvl_cls_scores: List[Tensor], mask_feats: Tensor, | |
| batch_img_metas: List[dict], **kwargs) -> InstanceList: | |
| """Transform a batch of output features extracted from the head into | |
| mask results. | |
| Args: | |
| mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel | |
| prediction. The kernel is used to generate instance | |
| segmentation masks by dynamic convolution. Each element in the | |
| list has shape | |
| (batch_size, kernel_out_channels, num_grids, num_grids). | |
| mlvl_cls_scores (list[Tensor]): Multi-level scores. Each element | |
| in the list has shape | |
| (batch_size, num_classes, num_grids, num_grids). | |
| mask_feats (Tensor): Unified mask feature map used to generate | |
| instance segmentation masks by dynamic convolution. Has shape | |
| (batch_size, mask_out_channels, h, w). | |
| batch_img_metas (list[dict]): Meta information of all images. | |
| Returns: | |
| list[:obj:`InstanceData`]: Processed results of multiple | |
| images.Each :obj:`InstanceData` usually contains | |
| following keys. | |
| - scores (Tensor): Classification scores, has shape | |
| (num_instance,). | |
| - labels (Tensor): Has shape (num_instances,). | |
| - masks (Tensor): Processed mask results, has | |
| shape (num_instances, h, w). | |
| """ | |
| num_levels = len(mlvl_cls_scores) | |
| assert len(mlvl_kernel_preds) == len(mlvl_cls_scores) | |
| for lvl in range(num_levels): | |
| cls_scores = mlvl_cls_scores[lvl] | |
| cls_scores = cls_scores.sigmoid() | |
| local_max = F.max_pool2d(cls_scores, 2, stride=1, padding=1) | |
| keep_mask = local_max[:, :, :-1, :-1] == cls_scores | |
| cls_scores = cls_scores * keep_mask | |
| mlvl_cls_scores[lvl] = cls_scores.permute(0, 2, 3, 1) | |
| result_list = [] | |
| for img_id in range(len(batch_img_metas)): | |
| img_cls_pred = [ | |
| mlvl_cls_scores[lvl][img_id].view(-1, self.cls_out_channels) | |
| for lvl in range(num_levels) | |
| ] | |
| img_mask_feats = mask_feats[[img_id]] | |
| img_kernel_pred = [ | |
| mlvl_kernel_preds[lvl][img_id].permute(1, 2, 0).view( | |
| -1, self.kernel_out_channels) for lvl in range(num_levels) | |
| ] | |
| img_cls_pred = torch.cat(img_cls_pred, dim=0) | |
| img_kernel_pred = torch.cat(img_kernel_pred, dim=0) | |
| result = self._predict_by_feat_single( | |
| img_kernel_pred, | |
| img_cls_pred, | |
| img_mask_feats, | |
| img_meta=batch_img_metas[img_id]) | |
| result_list.append(result) | |
| return result_list | |
| def _predict_by_feat_single(self, | |
| kernel_preds: Tensor, | |
| cls_scores: Tensor, | |
| mask_feats: Tensor, | |
| img_meta: dict, | |
| cfg: OptConfigType = None) -> InstanceData: | |
| """Transform a single image's features extracted from the head into | |
| mask results. | |
| Args: | |
| kernel_preds (Tensor): Dynamic kernel prediction of all points | |
| in single image, has shape | |
| (num_points, kernel_out_channels). | |
| cls_scores (Tensor): Classification score of all points | |
| in single image, has shape (num_points, num_classes). | |
| mask_feats (Tensor): Mask prediction of all points in | |
| single image, has shape (num_points, feat_h, feat_w). | |
| img_meta (dict): Meta information of corresponding image. | |
| cfg (dict, optional): Config used in test phase. | |
| Defaults to None. | |
| Returns: | |
| :obj:`InstanceData`: Processed results of single image. | |
| it usually contains following keys. | |
| - scores (Tensor): Classification scores, has shape | |
| (num_instance,). | |
| - labels (Tensor): Has shape (num_instances,). | |
| - masks (Tensor): Processed mask results, has | |
| shape (num_instances, h, w). | |
| """ | |
| def empty_results(cls_scores, ori_shape): | |
| """Generate a empty results.""" | |
| results = InstanceData() | |
| results.scores = cls_scores.new_ones(0) | |
| results.masks = cls_scores.new_zeros(0, *ori_shape) | |
| results.labels = cls_scores.new_ones(0) | |
| results.bboxes = cls_scores.new_zeros(0, 4) | |
| return results | |
| cfg = self.test_cfg if cfg is None else cfg | |
| assert len(kernel_preds) == len(cls_scores) | |
| featmap_size = mask_feats.size()[-2:] | |
| # overall info | |
| h, w = img_meta['img_shape'][:2] | |
| upsampled_size = (featmap_size[0] * self.mask_stride, | |
| featmap_size[1] * self.mask_stride) | |
| # process. | |
| score_mask = (cls_scores > cfg.score_thr) | |
| cls_scores = cls_scores[score_mask] | |
| if len(cls_scores) == 0: | |
| return empty_results(cls_scores, img_meta['ori_shape'][:2]) | |
| # cate_labels & kernel_preds | |
| inds = score_mask.nonzero() | |
| cls_labels = inds[:, 1] | |
| kernel_preds = kernel_preds[inds[:, 0]] | |
| # trans vector. | |
| lvl_interval = cls_labels.new_tensor(self.num_grids).pow(2).cumsum(0) | |
| strides = kernel_preds.new_ones(lvl_interval[-1]) | |
| strides[:lvl_interval[0]] *= self.strides[0] | |
| for lvl in range(1, self.num_levels): | |
| strides[lvl_interval[lvl - | |
| 1]:lvl_interval[lvl]] *= self.strides[lvl] | |
| strides = strides[inds[:, 0]] | |
| # mask encoding. | |
| kernel_preds = kernel_preds.view( | |
| kernel_preds.size(0), -1, self.dynamic_conv_size, | |
| self.dynamic_conv_size) | |
| mask_preds = F.conv2d( | |
| mask_feats, kernel_preds, stride=1).squeeze(0).sigmoid() | |
| # mask. | |
| masks = mask_preds > cfg.mask_thr | |
| sum_masks = masks.sum((1, 2)).float() | |
| keep = sum_masks > strides | |
| if keep.sum() == 0: | |
| return empty_results(cls_scores, img_meta['ori_shape'][:2]) | |
| masks = masks[keep] | |
| mask_preds = mask_preds[keep] | |
| sum_masks = sum_masks[keep] | |
| cls_scores = cls_scores[keep] | |
| cls_labels = cls_labels[keep] | |
| # maskness. | |
| mask_scores = (mask_preds * masks).sum((1, 2)) / sum_masks | |
| cls_scores *= mask_scores | |
| scores, labels, _, keep_inds = mask_matrix_nms( | |
| masks, | |
| cls_labels, | |
| cls_scores, | |
| mask_area=sum_masks, | |
| nms_pre=cfg.nms_pre, | |
| max_num=cfg.max_per_img, | |
| kernel=cfg.kernel, | |
| sigma=cfg.sigma, | |
| filter_thr=cfg.filter_thr) | |
| if len(keep_inds) == 0: | |
| return empty_results(cls_scores, img_meta['ori_shape'][:2]) | |
| mask_preds = mask_preds[keep_inds] | |
| mask_preds = F.interpolate( | |
| mask_preds.unsqueeze(0), | |
| size=upsampled_size, | |
| mode='bilinear', | |
| align_corners=False)[:, :, :h, :w] | |
| mask_preds = F.interpolate( | |
| mask_preds, | |
| size=img_meta['ori_shape'][:2], | |
| mode='bilinear', | |
| align_corners=False).squeeze(0) | |
| masks = mask_preds > cfg.mask_thr | |
| results = InstanceData() | |
| results.masks = masks | |
| results.labels = labels | |
| results.scores = scores | |
| # create an empty bbox in InstanceData to avoid bugs when | |
| # calculating metrics. | |
| bboxes = mask2bbox(masks) | |
| # results.bboxes = results.scores.new_zeros(len(scores), 4) | |
| results.bboxes = bboxes | |
| return results | |