Spaces:
Paused
Paused
File size: 9,919 Bytes
2967cdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Han Zhu,
# Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Computes word error rate (WER) with Whisper-large-v3 for English and
Paraformer for Chinese. Intended to evaluate WERs on Seed-TTS test sets.
"""
import argparse
import logging
import os
import string
import numpy as np
import scipy
import soundfile as sf
import torch
import zhconv
from funasr import AutoModel
from jiwer import compute_measures
from tqdm import tqdm
from transformers import WhisperForConditionalGeneration, WhisperProcessor
from zhon.hanzi import punctuation
def get_parser():
parser = argparse.ArgumentParser(
description="Computes WER with Whisper and Paraformer models, "
"following Seed-TTS.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--wav-path",
type=str,
required=True,
help="Path to the directory containing speech files.",
)
parser.add_argument(
"--extension",
type=str,
default="wav",
help="Extension of the speech files. Default: wav",
)
parser.add_argument(
"--decode-path",
type=str,
default=None,
help="Path to the output file where WER information will be saved. "
"If not provided, results are only printed to console.",
)
parser.add_argument(
"--model-dir",
type=str,
required=True,
help="Local path of evaluation models repository. "
"Download from https://huggingface.co/k2-fsa/TTS_eval_models. "
"This script expects 'tts_eval_models/wer/whisper-large-v3/' for English "
"and 'tts_eval_models/wer/paraformer-zh/' for Chinese within this directory.",
)
parser.add_argument(
"--test-list",
type=str,
default="test.tsv",
help="path of the tsv file. Each line is in the format:"
"(audio_name, prompt_text,prompt_audio, text) separated by tabs.",
)
parser.add_argument(
"--lang",
type=str,
choices=["zh", "en"],
required=True,
help="Language of the audio and transcripts for "
"decoding ('zh' for Chinese or 'en' for English).",
)
return parser
def load_en_model(model_dir):
model_path = os.path.join(model_dir, "wer/whisper-large-v3/")
if not os.path.exists(model_path):
logging.error(
f"Error: Whisper model not found at {model_path}. "
"Please download evaluation modelss from "
"https://huggingface.co/k2-fsa/TTS_eval_models "
"and pass this directory with --model-dir."
)
exit(1)
logging.info(f"Loading Whisper model from: {model_path}")
processor = WhisperProcessor.from_pretrained(model_path)
model = WhisperForConditionalGeneration.from_pretrained(model_path)
return processor, model
def load_zh_model(model_dir):
model_path = os.path.join(model_dir, "wer/paraformer-zh/")
if not os.path.exists(model_path):
logging.error(
f"Error: Paraformer model not found at {model_path}. "
"Please download evaluation modelss from "
"https://huggingface.co/k2-fsa/TTS_eval_models "
"and pass this directory with --model-dir."
)
exit(1)
logging.info(f"Loading Paraformer model from: {model_path}")
model = AutoModel(model=model_path, disable_update=True)
return model
def post_process(text: str, lang: str) -> str:
"""
Cleans and normalizes text for WER calculation.
Args:
text (str): The input text to be processed.
lang (str): The language of the input text.
Returns:
str: The cleaned and normalized text.
"""
punctuation_all = punctuation + string.punctuation
for x in punctuation_all:
if x == "'":
continue
text = text.replace(x, "")
text = text.replace(" ", " ")
if lang == "zh":
text = " ".join([x for x in text])
elif lang == "en":
text = text.lower()
else:
raise NotImplementedError
return text
def process_one(hypothesis: str, truth: str, lang: str) -> tuple:
"""
Computes WER and related metrics for a single hypothesis-truth pair.
Args:
hypothesis (str): The transcribed text from the ASR model.
truth (str): The ground truth transcript.
Returns:
tuple: A tuple containing:
- truth (str): Post-processed ground truth text.
- hypothesis (str): Post-processed hypothesis text.
- wer (float): Word Error Rate.
- substitutions (int): Number of substitutions.
- deletions (int): Number of deletions.
- insertions (int): Number of insertions.
- word_num (int): Number of words in the post-processed ground truth.
"""
truth_processed = post_process(truth, lang)
hypothesis_processed = post_process(hypothesis, lang)
measures = compute_measures(truth_processed, hypothesis_processed)
word_num = len(truth_processed.split(" "))
return (
truth_processed,
hypothesis_processed,
measures["wer"],
measures["substitutions"],
measures["deletions"],
measures["insertions"],
word_num,
)
def main(test_list, wav_path, extension, model_path, decode_path, lang, device):
logging.info(f"Calculating WER for {wav_path}")
if lang == "en":
processor, model = load_en_model(model_path)
model.to(device)
elif lang == "zh":
model = load_zh_model(model_path)
params = []
for line in open(test_list).readlines():
line = line.strip()
items = line.split("\t")
wav_name, text_ref = items[0], items[-1]
file_path = os.path.join(wav_path, wav_name + "." + extension)
assert os.path.exists(file_path), f"{file_path}"
params.append((file_path, text_ref))
# Initialize metrics for overall WER calculation
wers = []
inses = []
deles = []
subses = []
word_nums = 0
if decode_path:
# Ensure the output directory exists
decode_dir = os.path.dirname(decode_path)
if decode_dir and not os.path.exists(decode_dir):
os.makedirs(decode_dir)
fout = open(decode_path, "w")
for wav_path, text_ref in tqdm(params):
if lang == "en":
wav, sr = sf.read(wav_path)
if sr != 16000:
wav = scipy.signal.resample(wav, int(len(wav) * 16000 / sr))
input_features = processor(
wav, sampling_rate=16000, return_tensors="pt"
).input_features
input_features = input_features.to(device)
forced_decoder_ids = processor.get_decoder_prompt_ids(
language="english", task="transcribe"
)
predicted_ids = model.generate(
input_features, forced_decoder_ids=forced_decoder_ids
)
transcription = processor.batch_decode(
predicted_ids, skip_special_tokens=True
)[0]
elif lang == "zh":
res = model.generate(input=wav_path, batch_size_s=300, disable_pbar=True)
transcription = res[0]["text"]
transcription = zhconv.convert(transcription, "zh-cn")
truth, hypo, wer, subs, dele, inse, word_num = process_one(
transcription, text_ref, lang
)
if decode_path:
fout.write(f"{wav_path}\t{wer}\t{truth}\t{hypo}\t{inse}\t{dele}\t{subs}\n")
wers.append(float(wer))
inses.append(float(inse))
deles.append(float(dele))
subses.append(float(subs))
word_nums += word_num
wer_avg = round(np.mean(wers) * 100, 2)
wer = round((np.sum(subses) + np.sum(deles) + np.sum(inses)) / word_nums * 100, 2)
inse = np.sum(inses)
dele = np.sum(deles)
subs = np.sum(subses)
print("-" * 50)
# The official evaluation codes of Seed-TTS uses the average of WERs
# instead of the weighted average of WERs.
logging.info(f"Seed-TTS WER: {wer_avg}%\n")
logging.info(f"WER: {wer}%\n")
logging.info(
f"Errors: {inse} insertions, {dele} deletions, {subs} substitutions, "
f"over {word_nums} reference words"
)
print("-" * 50)
if decode_path:
fout.write(f"SeedTTS WER: {wer_avg}%\n")
fout.write(f"WER: {wer}%\n")
fout.write(
f"Errors: {inse} insertions, {dele} deletions, {subs} substitutions, "
f"over {word_nums} reference words\n"
)
fout.flush()
if __name__ == "__main__":
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO, force=True)
parser = get_parser()
args = parser.parse_args()
if torch.cuda.is_available():
device = torch.device("cuda", 0)
else:
device = torch.device("cpu")
main(
args.test_list,
args.wav_path,
args.extension,
args.model_dir,
args.decode_path,
args.lang,
device,
)
|