File size: 9,919 Bytes
2967cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#!/usr/bin/env python3
# Copyright    2025  Xiaomi Corp.        (authors:  Han Zhu,
#                                                   Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Computes word error rate (WER) with Whisper-large-v3 for English and
Paraformer for Chinese. Intended to evaluate WERs on Seed-TTS test sets.
"""

import argparse
import logging
import os
import string

import numpy as np
import scipy
import soundfile as sf
import torch
import zhconv
from funasr import AutoModel
from jiwer import compute_measures
from tqdm import tqdm
from transformers import WhisperForConditionalGeneration, WhisperProcessor
from zhon.hanzi import punctuation


def get_parser():
    parser = argparse.ArgumentParser(
        description="Computes WER with Whisper and Paraformer models, "
        "following Seed-TTS.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )

    parser.add_argument(
        "--wav-path",
        type=str,
        required=True,
        help="Path to the directory containing speech files.",
    )

    parser.add_argument(
        "--extension",
        type=str,
        default="wav",
        help="Extension of the speech files. Default: wav",
    )

    parser.add_argument(
        "--decode-path",
        type=str,
        default=None,
        help="Path to the output file where WER information will be saved. "
        "If not provided, results are only printed to console.",
    )
    parser.add_argument(
        "--model-dir",
        type=str,
        required=True,
        help="Local path of evaluation models repository. "
        "Download from https://huggingface.co/k2-fsa/TTS_eval_models. "
        "This script expects 'tts_eval_models/wer/whisper-large-v3/' for English "
        "and 'tts_eval_models/wer/paraformer-zh/' for Chinese within this directory.",
    )
    parser.add_argument(
        "--test-list",
        type=str,
        default="test.tsv",
        help="path of the tsv file. Each line is in the format:"
        "(audio_name, prompt_text,prompt_audio, text) separated by tabs.",
    )
    parser.add_argument(
        "--lang",
        type=str,
        choices=["zh", "en"],
        required=True,
        help="Language of the audio and transcripts for "
        "decoding ('zh' for Chinese or 'en' for English).",
    )
    return parser


def load_en_model(model_dir):
    model_path = os.path.join(model_dir, "wer/whisper-large-v3/")
    if not os.path.exists(model_path):
        logging.error(
            f"Error: Whisper model not found at {model_path}. "
            "Please download evaluation modelss from "
            "https://huggingface.co/k2-fsa/TTS_eval_models "
            "and pass this directory with --model-dir."
        )
        exit(1)
    logging.info(f"Loading Whisper model from: {model_path}")
    processor = WhisperProcessor.from_pretrained(model_path)
    model = WhisperForConditionalGeneration.from_pretrained(model_path)
    return processor, model


def load_zh_model(model_dir):
    model_path = os.path.join(model_dir, "wer/paraformer-zh/")
    if not os.path.exists(model_path):
        logging.error(
            f"Error: Paraformer model not found at {model_path}. "
            "Please download evaluation modelss from "
            "https://huggingface.co/k2-fsa/TTS_eval_models "
            "and pass this directory with --model-dir."
        )
        exit(1)
    logging.info(f"Loading Paraformer model from: {model_path}")
    model = AutoModel(model=model_path, disable_update=True)
    return model


def post_process(text: str, lang: str) -> str:
    """
    Cleans and normalizes text for WER calculation.
    Args:
        text (str): The input text to be processed.
        lang (str): The language of the input text.

    Returns:
        str: The cleaned and normalized text.
    """
    punctuation_all = punctuation + string.punctuation
    for x in punctuation_all:
        if x == "'":
            continue
        text = text.replace(x, "")

    text = text.replace("  ", " ")

    if lang == "zh":
        text = " ".join([x for x in text])
    elif lang == "en":
        text = text.lower()
    else:
        raise NotImplementedError
    return text


def process_one(hypothesis: str, truth: str, lang: str) -> tuple:
    """
    Computes WER and related metrics for a single hypothesis-truth pair.

    Args:
        hypothesis (str): The transcribed text from the ASR model.
        truth (str): The ground truth transcript.

    Returns:
        tuple: A tuple containing:
            - truth (str): Post-processed ground truth text.
            - hypothesis (str): Post-processed hypothesis text.
            - wer (float): Word Error Rate.
            - substitutions (int): Number of substitutions.
            - deletions (int): Number of deletions.
            - insertions (int): Number of insertions.
            - word_num (int): Number of words in the post-processed ground truth.
    """
    truth_processed = post_process(truth, lang)
    hypothesis_processed = post_process(hypothesis, lang)

    measures = compute_measures(truth_processed, hypothesis_processed)
    word_num = len(truth_processed.split(" "))

    return (
        truth_processed,
        hypothesis_processed,
        measures["wer"],
        measures["substitutions"],
        measures["deletions"],
        measures["insertions"],
        word_num,
    )


def main(test_list, wav_path, extension, model_path, decode_path, lang, device):
    logging.info(f"Calculating WER for {wav_path}")
    if lang == "en":
        processor, model = load_en_model(model_path)
        model.to(device)
    elif lang == "zh":
        model = load_zh_model(model_path)
    params = []
    for line in open(test_list).readlines():
        line = line.strip()
        items = line.split("\t")
        wav_name, text_ref = items[0], items[-1]
        file_path = os.path.join(wav_path, wav_name + "." + extension)
        assert os.path.exists(file_path), f"{file_path}"

        params.append((file_path, text_ref))
    # Initialize metrics for overall WER calculation
    wers = []
    inses = []
    deles = []
    subses = []
    word_nums = 0
    if decode_path:
        # Ensure the output directory exists
        decode_dir = os.path.dirname(decode_path)
        if decode_dir and not os.path.exists(decode_dir):
            os.makedirs(decode_dir)
        fout = open(decode_path, "w")
    for wav_path, text_ref in tqdm(params):
        if lang == "en":
            wav, sr = sf.read(wav_path)
            if sr != 16000:
                wav = scipy.signal.resample(wav, int(len(wav) * 16000 / sr))
            input_features = processor(
                wav, sampling_rate=16000, return_tensors="pt"
            ).input_features
            input_features = input_features.to(device)
            forced_decoder_ids = processor.get_decoder_prompt_ids(
                language="english", task="transcribe"
            )
            predicted_ids = model.generate(
                input_features, forced_decoder_ids=forced_decoder_ids
            )
            transcription = processor.batch_decode(
                predicted_ids, skip_special_tokens=True
            )[0]
        elif lang == "zh":
            res = model.generate(input=wav_path, batch_size_s=300, disable_pbar=True)
            transcription = res[0]["text"]
            transcription = zhconv.convert(transcription, "zh-cn")

        truth, hypo, wer, subs, dele, inse, word_num = process_one(
            transcription, text_ref, lang
        )
        if decode_path:
            fout.write(f"{wav_path}\t{wer}\t{truth}\t{hypo}\t{inse}\t{dele}\t{subs}\n")
        wers.append(float(wer))
        inses.append(float(inse))
        deles.append(float(dele))
        subses.append(float(subs))
        word_nums += word_num

    wer_avg = round(np.mean(wers) * 100, 2)
    wer = round((np.sum(subses) + np.sum(deles) + np.sum(inses)) / word_nums * 100, 2)
    inse = np.sum(inses)
    dele = np.sum(deles)
    subs = np.sum(subses)
    print("-" * 50)
    # The official evaluation codes of Seed-TTS uses the average of WERs
    # instead of the weighted average of WERs.
    logging.info(f"Seed-TTS WER: {wer_avg}%\n")
    logging.info(f"WER: {wer}%\n")
    logging.info(
        f"Errors: {inse} insertions, {dele} deletions, {subs} substitutions, "
        f"over {word_nums} reference words"
    )
    print("-" * 50)
    if decode_path:
        fout.write(f"SeedTTS WER: {wer_avg}%\n")
        fout.write(f"WER: {wer}%\n")
        fout.write(
            f"Errors: {inse} insertions, {dele} deletions, {subs} substitutions, "
            f"over {word_nums} reference words\n"
        )
        fout.flush()


if __name__ == "__main__":

    torch.set_num_threads(1)
    torch.set_num_interop_threads(1)

    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
    logging.basicConfig(format=formatter, level=logging.INFO, force=True)

    parser = get_parser()
    args = parser.parse_args()
    if torch.cuda.is_available():
        device = torch.device("cuda", 0)
    else:
        device = torch.device("cpu")
    main(
        args.test_list,
        args.wav_path,
        args.extension,
        args.model_dir,
        args.decode_path,
        args.lang,
        device,
    )