Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python3 | |
| """SD Dataset Automaker - HF Space (CPU) - Anime character dataset generator for LoRA/fine-tuning.""" | |
| import warnings | |
| warnings.filterwarnings('ignore', category=FutureWarning) # Suppress torch.cuda.amp spam | |
| warnings.filterwarnings('ignore', category=UserWarning, message='.*trust_repo.*') | |
| import os, re, shutil, zipfile, random, tempfile, argparse, sys | |
| from urllib.parse import quote_plus | |
| from collections import Counter | |
| from pathlib import Path | |
| from tqdm import tqdm | |
| import gradio as gr | |
| from bs4 import BeautifulSoup | |
| import requests as req_lib | |
| import time | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| import torch.nn as nn | |
| from torchvision import models, transforms | |
| from sklearn.metrics.pairwise import pairwise_distances | |
| import onnxruntime as rt | |
| import pandas as pd | |
| import huggingface_hub | |
| # ============================================================================= | |
| # CONFIG | |
| # ============================================================================= | |
| EXTS = ('.jpg', '.jpeg', '.png') | |
| MODEL_DIR = Path(__file__).parent.resolve() # Ensure absolute path | |
| YOLO_PATH = MODEL_DIR / "yolov5s_anime.pt" | |
| SIM_PATH = MODEL_DIR / "similarity.pt" | |
| EXAMPLES = [str(MODEL_DIR / f"from_url_spike_spiegel{i}.jpg") for i in range(1, 4)] # absolute paths for gr.Examples | |
| WD_REPO = "SmilingWolf/wd-swinv2-tagger-v3" | |
| TAG_THRESH, BLACKLIST = 0.35, ["bangs", "breasts", "multicolored hair", "gradient hair", "two-tone hair", "virtual youtuber"] | |
| FACE_CONF, FACE_IOU, MIN_FACE, CROP_PAD = 0.5, 0.5, 35, 0.2 | |
| SIM_THRESH, BATCH_SZ, FACE_SZ = 32, 16, 224 | |
| # ============================================================================= | |
| # UTILS | |
| # ============================================================================= | |
| sanitize = lambda s: re.sub(r'[^\w.-]', '', s.replace(" ", "_")) | |
| get_imgs = lambda d: sorted([os.path.join(r,f) for r,_,fs in os.walk(d) for f in fs if f.lower().endswith(EXTS)]) | |
| valid_img = lambda p: (lambda i: i.load() or True)(Image.open(p)) if os.path.exists(p) else False | |
| # HTTP session - mode depends on environment | |
| # CLI (local Windows): cloudscraper bypasses Cloudflare | |
| # HF Spaces: plain requests (cloudscraper fingerprint gets blocked on datacenter IPs) | |
| def init_session(use_cloudscraper=False): | |
| global SESSION, HTTP_CLIENT | |
| if use_cloudscraper: | |
| try: | |
| import cloudscraper | |
| SESSION = cloudscraper.create_scraper() | |
| HTTP_CLIENT = "cloudscraper" | |
| return | |
| except ImportError: | |
| pass # fallback to requests | |
| SESSION = req_lib.Session() | |
| SESSION.headers.update({ | |
| 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36', | |
| 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8', | |
| 'Accept-Language': 'en-US,en;q=0.5', | |
| 'Accept-Encoding': 'gzip, deflate, br', | |
| 'DNT': '1', | |
| 'Connection': 'keep-alive', | |
| 'Upgrade-Insecure-Requests': '1', | |
| 'Sec-Fetch-Dest': 'document', | |
| 'Sec-Fetch-Mode': 'navigate', | |
| 'Sec-Fetch-Site': 'none', | |
| 'Sec-Fetch-User': '?1', | |
| 'Cache-Control': 'max-age=0', | |
| 'Referer': 'https://fancaps.net/', | |
| }) | |
| HTTP_CLIENT = "requests/browser-headers" | |
| # Default: plain requests (for HF Spaces import) | |
| SESSION = None | |
| HTTP_CLIENT = None | |
| init_session(use_cloudscraper=False) | |
| # ============================================================================= | |
| # SCRAPING | |
| # ============================================================================= | |
| def search_fancaps(prompt, anime=True, movies=False, tv=False, log_fn=None): | |
| L = log_fn or print | |
| url = f"https://fancaps.net/search.php?q={quote_plus(prompt)}&submit=Submit" | |
| if anime: url += "&animeCB=Anime" | |
| if movies: url += "&MoviesCB=Movies" | |
| if tv: url += "&TVCB=TV" | |
| L(f" URL: {url}") | |
| try: | |
| resp = SESSION.get(url, timeout=30) | |
| L(f" Status: {resp.status_code}, Size: {len(resp.content)} bytes") | |
| # Log key headers for debugging | |
| cf_ray = resp.headers.get('cf-ray', 'none') | |
| server = resp.headers.get('server', 'unknown') | |
| L(f" Server: {server}, CF-Ray: {cf_ray}") | |
| if resp.status_code != 200: | |
| L(f" ERROR: HTTP {resp.status_code}") | |
| # Show snippet of response to understand the block reason | |
| content_snippet = resp.text[:500].replace('\n', ' ').strip() | |
| L(f" Response snippet: {content_snippet[:200]}...") | |
| return {} | |
| soup = BeautifulSoup(resp.content, "html.parser") | |
| # Debug: check if we got Cloudflare challenge | |
| title = soup.title.string if soup.title else "No title" | |
| L(f" Page title: {title[:50]}") | |
| if "cloudflare" in title.lower() or "challenge" in title.lower(): | |
| L(" ERROR: Cloudflare challenge detected!") | |
| return {} | |
| except Exception as e: | |
| L(f" ERROR: {type(e).__name__}: {e}") | |
| return {} | |
| results, cnt = {}, 1 | |
| divs = soup.find_all("div", class_="single_post_content") | |
| L(f" Found {len(divs)} content divs") | |
| for div in divs: | |
| if not div.find('h2'): continue | |
| for h2 in div.find_all('h2'): | |
| title = h2.get_text(strip=True).lower() | |
| cat = 'Movies' if 'movie' in title else 'TV' if 'tv' in title else 'Anime' if 'anime' in title else None | |
| if not cat: continue | |
| table = h2.find_next('table') | |
| if not table: continue | |
| results.setdefault(cat, []) | |
| for h4 in table.find_all('h4'): | |
| a = h4.find('a') | |
| if a and a.get('href'): | |
| results[cat].append((a.get_text(strip=True), a['href'], cnt)); cnt += 1 | |
| break | |
| L(f" Parsed results: {sum(len(v) for v in results.values())} items in {list(results.keys())}") | |
| return results | |
| def get_episodes(url, log_fn=None): | |
| L = log_fn or (lambda x: None) | |
| links, page = [], 1 | |
| while True: | |
| try: | |
| resp = SESSION.get(f"{url}&page={page}", timeout=20) | |
| L(f" get_episodes page {page}: status={resp.status_code}") | |
| if resp.status_code != 200: | |
| L(f" ERROR: {resp.text[:150]}...") | |
| break | |
| soup = BeautifulSoup(resp.content, "html.parser") | |
| except Exception as e: | |
| L(f" get_episodes ERROR: {type(e).__name__}: {e}") | |
| break | |
| btns = soup.find_all('a', class_='btn btn-block') | |
| if not btns: | |
| L(f" No episode buttons on page {page}") | |
| break | |
| links.extend([("https://fancaps.net" + b['href'] if b['href'].startswith('/') else b['href']) for b in btns if b.get('href')]) | |
| L(f" Found {len(btns)} episodes on page {page}, total: {len(links)}") | |
| page += 1 | |
| return links or [url] | |
| def get_frame_names(url, log_fn=None): | |
| L = log_fn or (lambda x: None) | |
| names, page = [], 1 | |
| while True: | |
| try: | |
| resp = SESSION.get(f"{url}&page={page}", timeout=20) | |
| if resp.status_code != 200: | |
| L(f" get_frames page {page}: status={resp.status_code}") | |
| break | |
| soup = BeautifulSoup(resp.content, "html.parser") | |
| except Exception as e: | |
| L(f" get_frames ERROR: {type(e).__name__}: {e}") | |
| break | |
| imgs = soup.find_all('img', class_='imageFade') | |
| if not imgs: | |
| if page == 1: L(f" No images found on first page!") | |
| break | |
| names.extend([s.split('/')[-1] for i in imgs if (s := i.get('src')) and s.split('/')[-1] not in names]) | |
| pager = soup.select_one('ul.pagination li:last-child a') | |
| if not pager or pager.get('href') in ['#', None]: break | |
| page += 1 | |
| L(f" Total frame names: {len(names)}") | |
| return names | |
| def download(url, folder, name, timeout=10, retries=3): | |
| """Download single image with retry - returns (success, status_code).""" | |
| fp = os.path.join(folder, name) | |
| if os.path.exists(fp): return True, 200 | |
| for attempt in range(retries): | |
| try: | |
| r = SESSION.get(url, stream=True, timeout=timeout) | |
| if r.status_code == 200: | |
| with open(fp, 'wb') as f: | |
| for chunk in r.iter_content(16384): | |
| if chunk: f.write(chunk) | |
| return True, 200 | |
| if r.status_code == 429: # Rate limit - don't retry immediately | |
| return False, 429 | |
| # Other errors - retry | |
| except: | |
| pass | |
| if attempt < retries - 1: | |
| time.sleep(1) | |
| return False, None | |
| def scrape(name, link, save_dir, max_imgs, progress=None, log_fn=None): | |
| L = log_fn or print | |
| url, folder = "https://fancaps.net" + link, os.path.join(save_dir, sanitize(name)) | |
| os.makedirs(folder, exist_ok=True) | |
| section = 'movie' if '/movies/' in link else 'anime' if '/anime/' in link else 'tv' | |
| L(f" [2/8] Scraping: {url}") | |
| L(f" Section: {section}, max: {max_imgs}") | |
| consecutive_429 = 0 | |
| max_429 = 3 # Abort after 3 consecutive 429s | |
| if section == 'movie': | |
| names = get_frame_names(url, log_fn=L) | |
| L(f" Movie frames: {len(names)}") | |
| sampled = random.sample(names, min(max_imgs, len(names))) if names else [] | |
| downloaded = 0 | |
| for i, n in enumerate(sampled): | |
| if consecutive_429 >= max_429: | |
| L(f" Aborting: {consecutive_429} consecutive 429s") | |
| break | |
| if i > 0: time.sleep(random.uniform(0.3, 0.8)) # Faster delay | |
| try: | |
| if progress and len(sampled) > 0: progress((i+1)/len(sampled), desc=f"Downloading {name[:20]}") | |
| except: pass | |
| success, status = download(f"https://cdni.fancaps.net/file/fancaps-{section}images/{n}", folder, n) | |
| if success: | |
| downloaded += 1 | |
| consecutive_429 = 0 | |
| elif status == 429: | |
| consecutive_429 += 1 | |
| cooldown = 30 * consecutive_429 | |
| L(f" 429 rate limit ({consecutive_429}/{max_429}), cooling {cooldown}s...") | |
| time.sleep(cooldown) | |
| else: | |
| consecutive_429 = 0 | |
| L(f" Downloaded: {downloaded}/{len(sampled)}") | |
| else: | |
| L(f" Fetching episodes...") | |
| eps = get_episodes(url, log_fn=L) | |
| L(f" Episodes: {len(eps)}") | |
| total = 0 | |
| per_ep = max(1, max_imgs // len(eps)) if eps else max_imgs | |
| for i, ep in enumerate(eps): | |
| if total >= max_imgs or consecutive_429 >= max_429: break | |
| names = get_frame_names(ep, log_fn=L) | |
| if not names: continue | |
| ep_dir = os.path.join(folder, f"Ep{i+1}") | |
| os.makedirs(ep_dir, exist_ok=True) | |
| sampled = random.sample(names, min(per_ep, len(names), max_imgs - total)) | |
| for j, n in enumerate(sampled): | |
| if consecutive_429 >= max_429: break | |
| if j > 0: time.sleep(random.uniform(0.3, 0.8)) # Faster delay | |
| try: | |
| if progress and max_imgs > 0: progress(total/max_imgs, desc=f"Ep{i+1}") | |
| except: pass # Gradio progress can fail in some contexts | |
| success, status = download(f"https://cdni.fancaps.net/file/fancaps-{section}images/{n}", ep_dir, n) | |
| if success: | |
| total += 1 | |
| consecutive_429 = 0 | |
| elif status == 429: | |
| consecutive_429 += 1 | |
| cooldown = 30 * consecutive_429 | |
| L(f" 429 rate limit ({consecutive_429}/{max_429}), cooling {cooldown}s...") | |
| time.sleep(cooldown) | |
| else: | |
| consecutive_429 = 0 | |
| L(f" Total downloaded: {total}") | |
| # ============================================================================= | |
| # ML MODELS (cached) | |
| # ============================================================================= | |
| _models = {} | |
| def get_yolo(): | |
| if 'yolo' not in _models: | |
| _models['yolo'] = torch.hub.load('ultralytics/yolov5', 'custom', path=str(YOLO_PATH), force_reload=False, verbose=False) | |
| _models['yolo'].conf, _models['yolo'].iou = FACE_CONF, FACE_IOU | |
| return _models['yolo'] | |
| def get_sim(): | |
| if 'sim' not in _models: | |
| class SiameseNetwork(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.base_model = models.efficientnet_b0(weights=models.EfficientNet_B0_Weights.DEFAULT) | |
| def forward(self, x): | |
| return self.base_model(x) # 1000-class output (trained this way) | |
| m = SiameseNetwork() | |
| # Keep on CPU for consistent distance values across devices | |
| m.load_state_dict(torch.load(str(SIM_PATH), map_location="cpu", weights_only=True)) | |
| m.eval() | |
| _models['sim'] = m | |
| return _models['sim'] | |
| def get_tagger(): | |
| if 'tag' not in _models: | |
| mp, cp = huggingface_hub.hf_hub_download(WD_REPO, "model.onnx"), huggingface_hub.hf_hub_download(WD_REPO, "selected_tags.csv") | |
| tags = [str(x).replace('_', ' ') for x in pd.read_csv(cp)['name'].tolist()] | |
| sess = rt.InferenceSession(mp, providers=['CPUExecutionProvider']) | |
| _models['tag'] = (sess, tags, sess.get_inputs()[0].shape[1]) | |
| return _models['tag'] | |
| # ============================================================================= | |
| # PROCESSING | |
| # ============================================================================= | |
| def dedup(paths, thresh=0.98): | |
| if not paths: return [], [] | |
| m = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1); m.fc = nn.Identity(); m.eval() | |
| tf = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([.485,.456,.406],[.229,.224,.225])]) | |
| emb, valid = [], [] | |
| with torch.no_grad(): | |
| for i in range(0, len(paths), 32): | |
| batch = [(tf(Image.open(p).convert('RGB')), p) for p in paths[i:i+32] if valid_img(p)] | |
| if batch: | |
| x = torch.stack([b[0] for b in batch]) | |
| emb.append(m(x).numpy()); valid.extend([b[1] for b in batch]) | |
| del m | |
| if not emb: return [], [] | |
| emb = np.vstack(emb); emb /= np.linalg.norm(emb, axis=1, keepdims=True).clip(1e-8) | |
| sim = emb @ emb.T; np.fill_diagonal(sim, 0) | |
| keep, drop = [], set() | |
| for i in range(len(valid)): | |
| if i not in drop: keep.append(valid[i]); drop.update(j for j in np.where(sim[i] > thresh)[0] if j > i) | |
| return keep, [valid[i] for i in drop] | |
| def detect_faces(paths, out_dir): | |
| yolo = get_yolo(); os.makedirs(out_dir, exist_ok=True); cnt = 0 | |
| for p in paths: | |
| try: | |
| img = Image.open(p).convert('RGB'); w, h = img.size | |
| for j, det in enumerate(yolo(img, size=640).xyxy[0].cpu().numpy()): | |
| x1, y1, x2, y2, conf, _ = det | |
| bw, bh = x2-x1, y2-y1 | |
| x1, y1, x2, y2 = max(0, x1-bw*CROP_PAD), max(0, y1-bh*CROP_PAD), min(w, x2+bw*CROP_PAD), min(h, y2+bh*CROP_PAD) | |
| if min(x2-x1, y2-y1) >= MIN_FACE: | |
| img.crop((int(x1), int(y1), int(x2), int(y2))).save(os.path.join(out_dir, f"{Path(p).stem}-{j+1}-{conf:.2f}.jpg"), quality=95) | |
| cnt += 1 | |
| except: pass | |
| return cnt | |
| def face_emb(paths): | |
| if not paths: return np.array([]), [] | |
| m = get_sim() # Always on CPU for consistent distances | |
| def pad(img): | |
| t, w, h = FACE_SZ, img.size[0], img.size[1]; r = w/h | |
| nw, nh = (t, int(t/r)) if r > 1 else (int(t*r), t) | |
| img = img.resize((nw, nh), Image.BICUBIC) | |
| out = Image.new('RGB', (t, t), (0,0,0)); out.paste(img, ((t-nw)//2, (t-nh)//2)); return out | |
| tf = transforms.Compose([lambda x: pad(x.convert('RGB') if x.mode == 'RGBA' else x), transforms.ToTensor()]) | |
| emb, valid = [], [] | |
| with torch.no_grad(): | |
| for i in range(0, len(paths), BATCH_SZ): | |
| batch = [(tf(Image.open(p)), p) for p in paths[i:i+BATCH_SZ] if valid_img(p)] | |
| if batch: | |
| x = torch.stack([b[0] for b in batch]) # CPU tensor | |
| emb.append(m(x).numpy()) | |
| valid.extend([b[1] for b in batch]) | |
| return (np.vstack(emb), valid) if emb else (np.array([]), []) | |
| def tag(path, act_tag="", char_tag=""): | |
| sess, tags, sz = get_tagger() | |
| img = Image.open(path).convert('RGB'); w, h = img.size | |
| s = min(sz/w, sz/h); nw, nh = int(w*s), int(h*s) | |
| pad = Image.new('RGB', (sz, sz), (255,255,255)); pad.paste(img.resize((nw, nh), Image.BICUBIC), ((sz-nw)//2, (sz-nh)//2)) | |
| probs = sess.run(None, {sess.get_inputs()[0].name: np.expand_dims(np.array(pad).astype(np.float32)[:,:,::-1], 0)})[0][0] | |
| found = [tags[i] for i, p in enumerate(probs) if p > TAG_THRESH and tags[i] not in BLACKLIST] | |
| # Prepend activation tag and character tag if provided | |
| prefix = [] | |
| if act_tag: prefix.append(act_tag); found = [t for t in found if t != act_tag] | |
| if char_tag: prefix.append(char_tag.replace("_", " ")); found = [t for t in found if t != char_tag.replace("_", " ")] | |
| return prefix + found | |
| # ============================================================================= | |
| # PIPELINE | |
| # ============================================================================= | |
| def parse_direct_url(url): | |
| """Parse direct fancaps URL, extract show name and relative link. Returns (name, link) or (None, None).""" | |
| # Match patterns: showimages.php?ID-Name, MovieImages.php?movieid=ID&name=Name, episodeimages.php?ID-Name | |
| patterns = [ | |
| r'fancaps\.net/anime/showimages\.php\?(\d+)-([^&/]+)', # anime show | |
| r'fancaps\.net/tv/showimages\.php\?(\d+)-([^&/]+)', # tv show | |
| r'fancaps\.net/movies/MovieImages\.php\?.*?movieid=(\d+)', # movie | |
| ] | |
| for pat in patterns: | |
| m = re.search(pat, url) | |
| if m: | |
| if 'anime' in url: section = 'anime' | |
| elif 'movies' in url: section = 'movies' | |
| else: section = 'tv' | |
| # Extract name from URL (replace underscores with spaces) | |
| name = m.group(2).replace('_', ' ') if len(m.groups()) > 1 else f"Show_{m.group(1)}" | |
| # Build relative link (what scrape() expects) | |
| if section == 'movies': | |
| link = f"/movies/MovieImages.php?movieid={m.group(1)}" | |
| else: | |
| link = f"/{section}/showimages.php?{m.group(1)}-{m.group(2) if len(m.groups()) > 1 else ''}" | |
| return name, link | |
| return None, None | |
| def run(query, char, examples, max_img, thresh, act_tag, anime, movies, tv, progress=None, cli_mode=False): | |
| log = [] | |
| def L(m): log.append(m); print(m) | |
| def prog(val, desc=""): | |
| if progress and not cli_mode: progress(val, desc=desc) | |
| work = tempfile.mkdtemp(prefix="ds_") | |
| dirs = {k: os.path.join(work, f"{i}_{k}") for i, k in enumerate(['scrapped','filtered','faces','ex_faces','similar','results'], 1)} | |
| for d in dirs.values(): os.makedirs(d, exist_ok=True) | |
| final_zip = None # Track ZIP for cleanup | |
| try: | |
| L(f"HTTP client: {HTTP_CLIENT}") | |
| t0 = time.time() | |
| # Check if query is a direct fancaps URL (bypasses search, works on HF Spaces) | |
| if 'fancaps.net' in query and ('showimages.php' in query or 'MovieImages.php' in query): | |
| L(f"[1/8] Direct URL mode") | |
| name, link = parse_direct_url(query) | |
| if not link: | |
| return None, "\n".join(log) + "\n\nCouldn't parse URL!" | |
| item = (name, link, 1) | |
| L(f" Parsed: {name}") | |
| else: | |
| L(f"[1/8] Search: {query}") | |
| prog(0.05, desc="Searching...") | |
| res = search_fancaps(query, anime, movies, tv, log_fn=L) | |
| if not res: | |
| return None, "\n".join(log) + "\n\nSearch blocked! Use direct fancaps URL." | |
| item = next((items[0] for items in res.values() if items), None) | |
| if not item: return None, "No results!" | |
| show_name = item[0] | |
| if not char: char = sanitize(show_name) | |
| t1 = time.time(); L(f" Found: {show_name} ({t1-t0:.0f}s)"); prog(0.1, desc="Downloading...") | |
| # [2/8] Scrape | |
| scrape(item[0], item[1], dirs['scrapped'], max_img, progress if not cli_mode else None, log_fn=L) | |
| imgs = get_imgs(dirs['scrapped']) | |
| t2 = time.time(); L(f"[2/8] Downloaded: {len(imgs)} ({t2-t1:.0f}s)") | |
| if not imgs: return None, "No images downloaded!" | |
| # [3/8] Dedup | |
| prog(0.3, desc="Dedup...") | |
| imgs = [p for p in imgs if valid_img(p)] | |
| kept, rm = dedup(imgs) | |
| for p in kept: shutil.copy(p, os.path.join(dirs['filtered'], os.path.basename(p))) | |
| t3 = time.time(); L(f"[3/8] Dedup: {len(kept)} kept, -{len(rm)} ({t3-t2:.0f}s)") | |
| # [4/8] Detect faces | |
| prog(0.4, desc="Faces...") | |
| n = detect_faces(get_imgs(dirs['filtered']), dirs['faces']) | |
| t4 = time.time(); L(f"[4/8] Faces: {n} ({t4-t3:.0f}s)") | |
| if n == 0: return None, "No faces detected!" | |
| # [5/8] Process examples | |
| prog(0.5, desc="Examples...") | |
| ex_paths = [p for p in (examples or []) if p and os.path.exists(p)] | |
| if not ex_paths: ex_paths = [p for p in EXAMPLES if os.path.exists(p)] | |
| if not ex_paths: return None, "No example images!" | |
| n_ex = detect_faces(ex_paths, dirs['ex_faces']) | |
| t5 = time.time(); L(f"[5/8] Examples: {len(ex_paths)} imgs -> {n_ex} faces ({t5-t4:.0f}s)") | |
| if n_ex == 0: return None, "No faces in examples!" | |
| # [6/8] Match | |
| prog(0.6, desc="Matching...") | |
| f_emb, f_valid = face_emb(get_imgs(dirs['faces'])) | |
| e_emb, _ = face_emb(get_imgs(dirs['ex_faces'])) | |
| dists = pairwise_distances(f_emb, e_emb, metric='euclidean').min(axis=1) | |
| similar_idx = np.where(dists < thresh)[0] | |
| similar = [f_valid[i] for i in similar_idx] | |
| similar_dists = dists[similar_idx] | |
| t6 = time.time() | |
| L(f"[6/8] Matches: {len(similar)} (thresh={thresh}) ({t6-t5:.0f}s)") | |
| if len(similar_dists) > 0: | |
| L(f" Distances: min={similar_dists.min():.1f}, max={similar_dists.max():.1f}, mean={similar_dists.mean():.1f}") | |
| if not similar: return None, f"No matches! Try threshold > {thresh}" | |
| # [7/8] Get originals | |
| prog(0.7, desc="Collect...") | |
| origs = set() | |
| orig_to_dist = {} | |
| for i, fp in enumerate(similar): | |
| parts = os.path.basename(fp).rsplit('-', 2) | |
| base = parts[0] if len(parts) >= 3 else Path(fp).stem | |
| for ext in EXTS: | |
| op = os.path.join(dirs['filtered'], base + ext) | |
| if os.path.exists(op): | |
| origs.add(op) | |
| orig_to_dist[os.path.basename(op)] = similar_dists[i] | |
| break | |
| res_dir = os.path.join(work, f"results_{sanitize(char)}") | |
| os.makedirs(res_dir, exist_ok=True) | |
| for p in origs: shutil.copy(p, os.path.join(res_dir, os.path.basename(p))) | |
| t7 = time.time(); L(f"[7/8] Collected: {len(origs)} ({t7-t6:.0f}s)") | |
| # [8/8] Tag | |
| prog(0.8, desc="Tagging...") | |
| char_tag = char if char != sanitize(show_name) else "" | |
| for p in get_imgs(res_dir): | |
| tags = tag(p, act_tag, char_tag) | |
| with open(os.path.splitext(p)[0] + ".txt", 'w') as f: f.write(", ".join(tags)) | |
| t8 = time.time(); L(f"[8/8] Tagged: {len(origs)} ({t8-t7:.0f}s)") | |
| # Log each image with distance | |
| L(f"\nResults (distance to ref):") | |
| for name, d in sorted(orig_to_dist.items(), key=lambda x: x[1]): | |
| L(f" {name}: {d:.1f}") | |
| # Zip | |
| prog(0.95, desc="Zipping...") | |
| zp = os.path.join(work, f"{sanitize(char)}_dataset.zip") | |
| with zipfile.ZipFile(zp, 'w', zipfile.ZIP_DEFLATED) as z: | |
| for p in get_imgs(res_dir) + [os.path.splitext(p)[0]+".txt" for p in get_imgs(res_dir)]: | |
| if os.path.exists(p): z.write(p, os.path.basename(p)) | |
| # Copy ZIP to persistent temp location (Gradio needs file to exist after return) | |
| final_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip", prefix=f"{sanitize(char)}_").name | |
| shutil.copy(zp, final_zip) | |
| L(f"\nDone! {len(origs)} images, total {t8-t0:.0f}s"); prog(1.0, desc="Complete!") | |
| return final_zip, "\n".join(log) | |
| except Exception as e: | |
| import traceback | |
| return None, "\n".join(log) + f"\n\nERROR: {e}\n{traceback.format_exc()}" | |
| finally: | |
| # Clean up work directory (ZIP already copied out) | |
| if os.path.exists(work): | |
| shutil.rmtree(work, ignore_errors=True) | |
| # ============================================================================= | |
| # UI | |
| # ============================================================================= | |
| css = """ | |
| .gradio-container { padding-top: 10px !important; } | |
| .compact-group { margin-bottom: 8px !important; } | |
| """ | |
| with gr.Blocks(title="SD Dataset Automaker: Fancaps → Face Crop (YOLO) → Similarity (Siamese) → WD Tagger → ZIP") as demo: | |
| gr.Markdown("### SD Dataset Automaker: Fancaps → Face Crop (YOLO) → Similarity (Siamese) → WD Tagger → ZIP") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| # Compact input group | |
| with gr.Group(): | |
| with gr.Row(): | |
| query = gr.Textbox( | |
| label="Anime / Movie / Fancaps URL", | |
| placeholder="'Cowboy Bebop' or paste URL", | |
| scale=3 | |
| ) | |
| char = gr.Textbox(label="Character (optional, appends to tags)", placeholder="spike_spiegel", scale=2) | |
| with gr.Row(): | |
| ref_imgs = gr.Gallery( | |
| label="Reference Face Image(s)", | |
| columns=4, | |
| height=100, | |
| interactive=True, | |
| object_fit="scale-down", | |
| scale=3, | |
| ) | |
| run_btn = gr.Button("Generate Dataset", variant="primary", size="lg", scale=1) | |
| # Hidden File input for MCP compatibility (Gallery $ref schema bug persists in Gradio 6.0.1) | |
| ref_files = gr.File( | |
| label="Reference Images (MCP)", | |
| file_count="multiple", | |
| file_types=["image"], | |
| visible=False, | |
| ) | |
| # gr.Examples + gr.Gallery works in Gradio 5.46.0+ (PR #11787) | |
| gr.Examples( | |
| examples=[ | |
| ["https://fancaps.net/anime/showimages.php?3092-Cowboy_Bebop", "spike_spiegel", EXAMPLES], | |
| ], | |
| inputs=[query, char, ref_imgs], | |
| label="Example (click to load)", | |
| ) | |
| # Advanced settings in accordion | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| max_img = gr.Slider(50, 500, 200, step=50, label="Max Downloads (frames to scrape)") | |
| thresh = gr.Slider(20, 60, 32, step=1, label="Face Similarity (lower=stricter)") | |
| with gr.Row(): | |
| act_tag = gr.Textbox(label="Trigger Word (prepends to captions)", placeholder="e.g. sks_style", scale=2) | |
| anime_cb = gr.Checkbox(label="Anime", value=True, scale=1) | |
| movies_cb = gr.Checkbox(label="Movies", scale=1) | |
| tv_cb = gr.Checkbox(label="TV", scale=1) | |
| with gr.Column(scale=1): | |
| out_file = gr.File(label="Download ZIP", interactive=False) | |
| with gr.Accordion("Log", open=True): | |
| out_log = gr.Textbox(label="", lines=12, max_lines=50, show_label=False, autoscroll=False) | |
| gr.Markdown("*CPU: ~5-10 min/run*") | |
| def process(q, c, imgs, files, mi, th, at, an, mo, tv, prog=gr.Progress()): | |
| if not q: | |
| gr.Warning("Enter anime name or URL") | |
| return None, "" | |
| # Collect paths from Gallery (imgs) or File input (files) | |
| paths = [] | |
| for item in (imgs or []): | |
| p = item[0] if isinstance(item, (list, tuple)) else item | |
| if p and os.path.exists(p): paths.append(p) | |
| if not paths and files: | |
| for f in (files if isinstance(files, list) else [files]): | |
| fp = f.name if hasattr(f, 'name') else str(f) | |
| if fp and os.path.exists(fp): paths.append(fp) | |
| if not paths: | |
| gr.Warning("Upload reference images or click 'Load Example'") | |
| return None, "" | |
| if 'fancaps.net' in q: | |
| gr.Info("Direct URL detected") | |
| else: | |
| gr.Info(f"Searching: {q}") | |
| zp, log = run(q, c, paths, mi, th, at, an, mo, tv, prog) | |
| if zp: | |
| gr.Info("Done!") | |
| return zp, log | |
| run_btn.click(process, [query, char, ref_imgs, ref_files, max_img, thresh, act_tag, anime_cb, movies_cb, tv_cb], [out_file, out_log]) | |
| def run_cli(): | |
| """CLI mode with cloudscraper for Cloudflare bypass""" | |
| # Use cloudscraper for CLI (bypasses Cloudflare on local/residential IPs) | |
| init_session(use_cloudscraper=True) | |
| parser = argparse.ArgumentParser(description="SD Dataset Automaker - Anime character dataset generator") | |
| parser.add_argument("--title", "-t", required=True, help="Anime name or fancaps.net URL") | |
| parser.add_argument("--image", "-i", nargs="+", required=True, help="Reference face images (1-5)") | |
| parser.add_argument("--char", "-c", default="", help="Character name (optional, appends to tags)") | |
| parser.add_argument("--max", "-m", type=int, default=200, help="Max frames to scrape (default: 200)") | |
| parser.add_argument("--thresh", type=float, default=32.0, help="Face similarity threshold, lower=stricter (default: 32)") | |
| parser.add_argument("--tag", default="", help="Trigger word to prepend to captions") | |
| parser.add_argument("--anime", action="store_true", default=True, help="Search anime (default)") | |
| parser.add_argument("--movies", action="store_true", help="Search movies") | |
| parser.add_argument("--tv", action="store_true", help="Search TV") | |
| parser.add_argument("--output", "-o", default=".", help="Output directory (default: current)") | |
| args = parser.parse_args() | |
| # Validate images | |
| ref_imgs = [p for p in args.image if os.path.exists(p)] | |
| if not ref_imgs: | |
| print(f"ERROR: No valid reference images found: {args.image}") | |
| sys.exit(1) | |
| print(f"SD Dataset Automaker - CLI Mode") | |
| print(f" Title: {args.title}") | |
| print(f" Refs: {len(ref_imgs)} images") | |
| print(f" Char: {args.char or '(auto from title)'}") | |
| print() | |
| zp, log = run( | |
| query=args.title, | |
| char=args.char, | |
| examples=ref_imgs, | |
| max_img=args.max, | |
| thresh=args.thresh, | |
| act_tag=args.tag, | |
| anime=args.anime, | |
| movies=args.movies, | |
| tv=args.tv, | |
| cli_mode=True | |
| ) | |
| if zp: | |
| # Copy to output dir | |
| out_path = os.path.join(args.output, os.path.basename(zp)) | |
| shutil.copy(zp, out_path) | |
| print(f"\nSaved: {out_path}") | |
| else: | |
| print(f"\nFailed!") | |
| sys.exit(1) | |
| if __name__ == "__main__": | |
| # CLI mode if args provided, else Gradio UI | |
| if len(sys.argv) > 1: | |
| run_cli() | |
| else: | |
| # Gradio UI mode | |
| allowed_dir = os.path.dirname(os.path.abspath(__file__)) | |
| demo.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| mcp_server=True, | |
| show_error=True, | |
| allowed_paths=[allowed_dir], | |
| css=css, | |
| ) |