#!/usr/bin/env python3 """SD Dataset Automaker - HF Space (CPU) - Anime character dataset generator for LoRA/fine-tuning.""" import warnings warnings.filterwarnings('ignore', category=FutureWarning) # Suppress torch.cuda.amp spam warnings.filterwarnings('ignore', category=UserWarning, message='.*trust_repo.*') import os, re, shutil, zipfile, random, tempfile, argparse, sys from urllib.parse import quote_plus from collections import Counter from pathlib import Path from tqdm import tqdm import gradio as gr from bs4 import BeautifulSoup import requests as req_lib import time import numpy as np from PIL import Image import torch import torch.nn as nn from torchvision import models, transforms from sklearn.metrics.pairwise import pairwise_distances import onnxruntime as rt import pandas as pd import huggingface_hub # ============================================================================= # CONFIG # ============================================================================= EXTS = ('.jpg', '.jpeg', '.png') MODEL_DIR = Path(__file__).parent.resolve() # Ensure absolute path YOLO_PATH = MODEL_DIR / "yolov5s_anime.pt" SIM_PATH = MODEL_DIR / "similarity.pt" EXAMPLES = [str(MODEL_DIR / f"from_url_spike_spiegel{i}.jpg") for i in range(1, 4)] # absolute paths for gr.Examples WD_REPO = "SmilingWolf/wd-swinv2-tagger-v3" TAG_THRESH, BLACKLIST = 0.35, ["bangs", "breasts", "multicolored hair", "gradient hair", "two-tone hair", "virtual youtuber"] FACE_CONF, FACE_IOU, MIN_FACE, CROP_PAD = 0.5, 0.5, 35, 0.2 SIM_THRESH, BATCH_SZ, FACE_SZ = 32, 16, 224 # ============================================================================= # UTILS # ============================================================================= sanitize = lambda s: re.sub(r'[^\w.-]', '', s.replace(" ", "_")) get_imgs = lambda d: sorted([os.path.join(r,f) for r,_,fs in os.walk(d) for f in fs if f.lower().endswith(EXTS)]) valid_img = lambda p: (lambda i: i.load() or True)(Image.open(p)) if os.path.exists(p) else False # HTTP session - mode depends on environment # CLI (local Windows): cloudscraper bypasses Cloudflare # HF Spaces: plain requests (cloudscraper fingerprint gets blocked on datacenter IPs) def init_session(use_cloudscraper=False): global SESSION, HTTP_CLIENT if use_cloudscraper: try: import cloudscraper SESSION = cloudscraper.create_scraper() HTTP_CLIENT = "cloudscraper" return except ImportError: pass # fallback to requests SESSION = req_lib.Session() SESSION.headers.update({ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8', 'Accept-Language': 'en-US,en;q=0.5', 'Accept-Encoding': 'gzip, deflate, br', 'DNT': '1', 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1', 'Sec-Fetch-Dest': 'document', 'Sec-Fetch-Mode': 'navigate', 'Sec-Fetch-Site': 'none', 'Sec-Fetch-User': '?1', 'Cache-Control': 'max-age=0', 'Referer': 'https://fancaps.net/', }) HTTP_CLIENT = "requests/browser-headers" # Default: plain requests (for HF Spaces import) SESSION = None HTTP_CLIENT = None init_session(use_cloudscraper=False) # ============================================================================= # SCRAPING # ============================================================================= def search_fancaps(prompt, anime=True, movies=False, tv=False, log_fn=None): L = log_fn or print url = f"https://fancaps.net/search.php?q={quote_plus(prompt)}&submit=Submit" if anime: url += "&animeCB=Anime" if movies: url += "&MoviesCB=Movies" if tv: url += "&TVCB=TV" L(f" URL: {url}") try: resp = SESSION.get(url, timeout=30) L(f" Status: {resp.status_code}, Size: {len(resp.content)} bytes") # Log key headers for debugging cf_ray = resp.headers.get('cf-ray', 'none') server = resp.headers.get('server', 'unknown') L(f" Server: {server}, CF-Ray: {cf_ray}") if resp.status_code != 200: L(f" ERROR: HTTP {resp.status_code}") # Show snippet of response to understand the block reason content_snippet = resp.text[:500].replace('\n', ' ').strip() L(f" Response snippet: {content_snippet[:200]}...") return {} soup = BeautifulSoup(resp.content, "html.parser") # Debug: check if we got Cloudflare challenge title = soup.title.string if soup.title else "No title" L(f" Page title: {title[:50]}") if "cloudflare" in title.lower() or "challenge" in title.lower(): L(" ERROR: Cloudflare challenge detected!") return {} except Exception as e: L(f" ERROR: {type(e).__name__}: {e}") return {} results, cnt = {}, 1 divs = soup.find_all("div", class_="single_post_content") L(f" Found {len(divs)} content divs") for div in divs: if not div.find('h2'): continue for h2 in div.find_all('h2'): title = h2.get_text(strip=True).lower() cat = 'Movies' if 'movie' in title else 'TV' if 'tv' in title else 'Anime' if 'anime' in title else None if not cat: continue table = h2.find_next('table') if not table: continue results.setdefault(cat, []) for h4 in table.find_all('h4'): a = h4.find('a') if a and a.get('href'): results[cat].append((a.get_text(strip=True), a['href'], cnt)); cnt += 1 break L(f" Parsed results: {sum(len(v) for v in results.values())} items in {list(results.keys())}") return results def get_episodes(url, log_fn=None): L = log_fn or (lambda x: None) links, page = [], 1 while True: try: resp = SESSION.get(f"{url}&page={page}", timeout=20) L(f" get_episodes page {page}: status={resp.status_code}") if resp.status_code != 200: L(f" ERROR: {resp.text[:150]}...") break soup = BeautifulSoup(resp.content, "html.parser") except Exception as e: L(f" get_episodes ERROR: {type(e).__name__}: {e}") break btns = soup.find_all('a', class_='btn btn-block') if not btns: L(f" No episode buttons on page {page}") break links.extend([("https://fancaps.net" + b['href'] if b['href'].startswith('/') else b['href']) for b in btns if b.get('href')]) L(f" Found {len(btns)} episodes on page {page}, total: {len(links)}") page += 1 return links or [url] def get_frame_names(url, log_fn=None): L = log_fn or (lambda x: None) names, page = [], 1 while True: try: resp = SESSION.get(f"{url}&page={page}", timeout=20) if resp.status_code != 200: L(f" get_frames page {page}: status={resp.status_code}") break soup = BeautifulSoup(resp.content, "html.parser") except Exception as e: L(f" get_frames ERROR: {type(e).__name__}: {e}") break imgs = soup.find_all('img', class_='imageFade') if not imgs: if page == 1: L(f" No images found on first page!") break names.extend([s.split('/')[-1] for i in imgs if (s := i.get('src')) and s.split('/')[-1] not in names]) pager = soup.select_one('ul.pagination li:last-child a') if not pager or pager.get('href') in ['#', None]: break page += 1 L(f" Total frame names: {len(names)}") return names def download(url, folder, name, timeout=10, retries=3): """Download single image with retry - returns (success, status_code).""" fp = os.path.join(folder, name) if os.path.exists(fp): return True, 200 for attempt in range(retries): try: r = SESSION.get(url, stream=True, timeout=timeout) if r.status_code == 200: with open(fp, 'wb') as f: for chunk in r.iter_content(16384): if chunk: f.write(chunk) return True, 200 if r.status_code == 429: # Rate limit - don't retry immediately return False, 429 # Other errors - retry except: pass if attempt < retries - 1: time.sleep(1) return False, None def scrape(name, link, save_dir, max_imgs, progress=None, log_fn=None): L = log_fn or print url, folder = "https://fancaps.net" + link, os.path.join(save_dir, sanitize(name)) os.makedirs(folder, exist_ok=True) section = 'movie' if '/movies/' in link else 'anime' if '/anime/' in link else 'tv' L(f" [2/8] Scraping: {url}") L(f" Section: {section}, max: {max_imgs}") consecutive_429 = 0 max_429 = 3 # Abort after 3 consecutive 429s if section == 'movie': names = get_frame_names(url, log_fn=L) L(f" Movie frames: {len(names)}") sampled = random.sample(names, min(max_imgs, len(names))) if names else [] downloaded = 0 for i, n in enumerate(sampled): if consecutive_429 >= max_429: L(f" Aborting: {consecutive_429} consecutive 429s") break if i > 0: time.sleep(random.uniform(0.3, 0.8)) # Faster delay try: if progress and len(sampled) > 0: progress((i+1)/len(sampled), desc=f"Downloading {name[:20]}") except: pass success, status = download(f"https://cdni.fancaps.net/file/fancaps-{section}images/{n}", folder, n) if success: downloaded += 1 consecutive_429 = 0 elif status == 429: consecutive_429 += 1 cooldown = 30 * consecutive_429 L(f" 429 rate limit ({consecutive_429}/{max_429}), cooling {cooldown}s...") time.sleep(cooldown) else: consecutive_429 = 0 L(f" Downloaded: {downloaded}/{len(sampled)}") else: L(f" Fetching episodes...") eps = get_episodes(url, log_fn=L) L(f" Episodes: {len(eps)}") total = 0 per_ep = max(1, max_imgs // len(eps)) if eps else max_imgs for i, ep in enumerate(eps): if total >= max_imgs or consecutive_429 >= max_429: break names = get_frame_names(ep, log_fn=L) if not names: continue ep_dir = os.path.join(folder, f"Ep{i+1}") os.makedirs(ep_dir, exist_ok=True) sampled = random.sample(names, min(per_ep, len(names), max_imgs - total)) for j, n in enumerate(sampled): if consecutive_429 >= max_429: break if j > 0: time.sleep(random.uniform(0.3, 0.8)) # Faster delay try: if progress and max_imgs > 0: progress(total/max_imgs, desc=f"Ep{i+1}") except: pass # Gradio progress can fail in some contexts success, status = download(f"https://cdni.fancaps.net/file/fancaps-{section}images/{n}", ep_dir, n) if success: total += 1 consecutive_429 = 0 elif status == 429: consecutive_429 += 1 cooldown = 30 * consecutive_429 L(f" 429 rate limit ({consecutive_429}/{max_429}), cooling {cooldown}s...") time.sleep(cooldown) else: consecutive_429 = 0 L(f" Total downloaded: {total}") # ============================================================================= # ML MODELS (cached) # ============================================================================= _models = {} def get_yolo(): if 'yolo' not in _models: _models['yolo'] = torch.hub.load('ultralytics/yolov5', 'custom', path=str(YOLO_PATH), force_reload=False, verbose=False) _models['yolo'].conf, _models['yolo'].iou = FACE_CONF, FACE_IOU return _models['yolo'] def get_sim(): if 'sim' not in _models: class SiameseNetwork(nn.Module): def __init__(self): super().__init__() self.base_model = models.efficientnet_b0(weights=models.EfficientNet_B0_Weights.DEFAULT) def forward(self, x): return self.base_model(x) # 1000-class output (trained this way) m = SiameseNetwork() # Keep on CPU for consistent distance values across devices m.load_state_dict(torch.load(str(SIM_PATH), map_location="cpu", weights_only=True)) m.eval() _models['sim'] = m return _models['sim'] def get_tagger(): if 'tag' not in _models: mp, cp = huggingface_hub.hf_hub_download(WD_REPO, "model.onnx"), huggingface_hub.hf_hub_download(WD_REPO, "selected_tags.csv") tags = [str(x).replace('_', ' ') for x in pd.read_csv(cp)['name'].tolist()] sess = rt.InferenceSession(mp, providers=['CPUExecutionProvider']) _models['tag'] = (sess, tags, sess.get_inputs()[0].shape[1]) return _models['tag'] # ============================================================================= # PROCESSING # ============================================================================= def dedup(paths, thresh=0.98): if not paths: return [], [] m = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1); m.fc = nn.Identity(); m.eval() tf = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([.485,.456,.406],[.229,.224,.225])]) emb, valid = [], [] with torch.no_grad(): for i in range(0, len(paths), 32): batch = [(tf(Image.open(p).convert('RGB')), p) for p in paths[i:i+32] if valid_img(p)] if batch: x = torch.stack([b[0] for b in batch]) emb.append(m(x).numpy()); valid.extend([b[1] for b in batch]) del m if not emb: return [], [] emb = np.vstack(emb); emb /= np.linalg.norm(emb, axis=1, keepdims=True).clip(1e-8) sim = emb @ emb.T; np.fill_diagonal(sim, 0) keep, drop = [], set() for i in range(len(valid)): if i not in drop: keep.append(valid[i]); drop.update(j for j in np.where(sim[i] > thresh)[0] if j > i) return keep, [valid[i] for i in drop] def detect_faces(paths, out_dir): yolo = get_yolo(); os.makedirs(out_dir, exist_ok=True); cnt = 0 for p in paths: try: img = Image.open(p).convert('RGB'); w, h = img.size for j, det in enumerate(yolo(img, size=640).xyxy[0].cpu().numpy()): x1, y1, x2, y2, conf, _ = det bw, bh = x2-x1, y2-y1 x1, y1, x2, y2 = max(0, x1-bw*CROP_PAD), max(0, y1-bh*CROP_PAD), min(w, x2+bw*CROP_PAD), min(h, y2+bh*CROP_PAD) if min(x2-x1, y2-y1) >= MIN_FACE: img.crop((int(x1), int(y1), int(x2), int(y2))).save(os.path.join(out_dir, f"{Path(p).stem}-{j+1}-{conf:.2f}.jpg"), quality=95) cnt += 1 except: pass return cnt def face_emb(paths): if not paths: return np.array([]), [] m = get_sim() # Always on CPU for consistent distances def pad(img): t, w, h = FACE_SZ, img.size[0], img.size[1]; r = w/h nw, nh = (t, int(t/r)) if r > 1 else (int(t*r), t) img = img.resize((nw, nh), Image.BICUBIC) out = Image.new('RGB', (t, t), (0,0,0)); out.paste(img, ((t-nw)//2, (t-nh)//2)); return out tf = transforms.Compose([lambda x: pad(x.convert('RGB') if x.mode == 'RGBA' else x), transforms.ToTensor()]) emb, valid = [], [] with torch.no_grad(): for i in range(0, len(paths), BATCH_SZ): batch = [(tf(Image.open(p)), p) for p in paths[i:i+BATCH_SZ] if valid_img(p)] if batch: x = torch.stack([b[0] for b in batch]) # CPU tensor emb.append(m(x).numpy()) valid.extend([b[1] for b in batch]) return (np.vstack(emb), valid) if emb else (np.array([]), []) def tag(path, act_tag="", char_tag=""): sess, tags, sz = get_tagger() img = Image.open(path).convert('RGB'); w, h = img.size s = min(sz/w, sz/h); nw, nh = int(w*s), int(h*s) pad = Image.new('RGB', (sz, sz), (255,255,255)); pad.paste(img.resize((nw, nh), Image.BICUBIC), ((sz-nw)//2, (sz-nh)//2)) probs = sess.run(None, {sess.get_inputs()[0].name: np.expand_dims(np.array(pad).astype(np.float32)[:,:,::-1], 0)})[0][0] found = [tags[i] for i, p in enumerate(probs) if p > TAG_THRESH and tags[i] not in BLACKLIST] # Prepend activation tag and character tag if provided prefix = [] if act_tag: prefix.append(act_tag); found = [t for t in found if t != act_tag] if char_tag: prefix.append(char_tag.replace("_", " ")); found = [t for t in found if t != char_tag.replace("_", " ")] return prefix + found # ============================================================================= # PIPELINE # ============================================================================= def parse_direct_url(url): """Parse direct fancaps URL, extract show name and relative link. Returns (name, link) or (None, None).""" # Match patterns: showimages.php?ID-Name, MovieImages.php?movieid=ID&name=Name, episodeimages.php?ID-Name patterns = [ r'fancaps\.net/anime/showimages\.php\?(\d+)-([^&/]+)', # anime show r'fancaps\.net/tv/showimages\.php\?(\d+)-([^&/]+)', # tv show r'fancaps\.net/movies/MovieImages\.php\?.*?movieid=(\d+)', # movie ] for pat in patterns: m = re.search(pat, url) if m: if 'anime' in url: section = 'anime' elif 'movies' in url: section = 'movies' else: section = 'tv' # Extract name from URL (replace underscores with spaces) name = m.group(2).replace('_', ' ') if len(m.groups()) > 1 else f"Show_{m.group(1)}" # Build relative link (what scrape() expects) if section == 'movies': link = f"/movies/MovieImages.php?movieid={m.group(1)}" else: link = f"/{section}/showimages.php?{m.group(1)}-{m.group(2) if len(m.groups()) > 1 else ''}" return name, link return None, None def run(query, char, examples, max_img, thresh, act_tag, anime, movies, tv, progress=None, cli_mode=False): log = [] def L(m): log.append(m); print(m) def prog(val, desc=""): if progress and not cli_mode: progress(val, desc=desc) work = tempfile.mkdtemp(prefix="ds_") dirs = {k: os.path.join(work, f"{i}_{k}") for i, k in enumerate(['scrapped','filtered','faces','ex_faces','similar','results'], 1)} for d in dirs.values(): os.makedirs(d, exist_ok=True) final_zip = None # Track ZIP for cleanup try: L(f"HTTP client: {HTTP_CLIENT}") t0 = time.time() # Check if query is a direct fancaps URL (bypasses search, works on HF Spaces) if 'fancaps.net' in query and ('showimages.php' in query or 'MovieImages.php' in query): L(f"[1/8] Direct URL mode") name, link = parse_direct_url(query) if not link: return None, "\n".join(log) + "\n\nCouldn't parse URL!" item = (name, link, 1) L(f" Parsed: {name}") else: L(f"[1/8] Search: {query}") prog(0.05, desc="Searching...") res = search_fancaps(query, anime, movies, tv, log_fn=L) if not res: return None, "\n".join(log) + "\n\nSearch blocked! Use direct fancaps URL." item = next((items[0] for items in res.values() if items), None) if not item: return None, "No results!" show_name = item[0] if not char: char = sanitize(show_name) t1 = time.time(); L(f" Found: {show_name} ({t1-t0:.0f}s)"); prog(0.1, desc="Downloading...") # [2/8] Scrape scrape(item[0], item[1], dirs['scrapped'], max_img, progress if not cli_mode else None, log_fn=L) imgs = get_imgs(dirs['scrapped']) t2 = time.time(); L(f"[2/8] Downloaded: {len(imgs)} ({t2-t1:.0f}s)") if not imgs: return None, "No images downloaded!" # [3/8] Dedup prog(0.3, desc="Dedup...") imgs = [p for p in imgs if valid_img(p)] kept, rm = dedup(imgs) for p in kept: shutil.copy(p, os.path.join(dirs['filtered'], os.path.basename(p))) t3 = time.time(); L(f"[3/8] Dedup: {len(kept)} kept, -{len(rm)} ({t3-t2:.0f}s)") # [4/8] Detect faces prog(0.4, desc="Faces...") n = detect_faces(get_imgs(dirs['filtered']), dirs['faces']) t4 = time.time(); L(f"[4/8] Faces: {n} ({t4-t3:.0f}s)") if n == 0: return None, "No faces detected!" # [5/8] Process examples prog(0.5, desc="Examples...") ex_paths = [p for p in (examples or []) if p and os.path.exists(p)] if not ex_paths: ex_paths = [p for p in EXAMPLES if os.path.exists(p)] if not ex_paths: return None, "No example images!" n_ex = detect_faces(ex_paths, dirs['ex_faces']) t5 = time.time(); L(f"[5/8] Examples: {len(ex_paths)} imgs -> {n_ex} faces ({t5-t4:.0f}s)") if n_ex == 0: return None, "No faces in examples!" # [6/8] Match prog(0.6, desc="Matching...") f_emb, f_valid = face_emb(get_imgs(dirs['faces'])) e_emb, _ = face_emb(get_imgs(dirs['ex_faces'])) dists = pairwise_distances(f_emb, e_emb, metric='euclidean').min(axis=1) similar_idx = np.where(dists < thresh)[0] similar = [f_valid[i] for i in similar_idx] similar_dists = dists[similar_idx] t6 = time.time() L(f"[6/8] Matches: {len(similar)} (thresh={thresh}) ({t6-t5:.0f}s)") if len(similar_dists) > 0: L(f" Distances: min={similar_dists.min():.1f}, max={similar_dists.max():.1f}, mean={similar_dists.mean():.1f}") if not similar: return None, f"No matches! Try threshold > {thresh}" # [7/8] Get originals prog(0.7, desc="Collect...") origs = set() orig_to_dist = {} for i, fp in enumerate(similar): parts = os.path.basename(fp).rsplit('-', 2) base = parts[0] if len(parts) >= 3 else Path(fp).stem for ext in EXTS: op = os.path.join(dirs['filtered'], base + ext) if os.path.exists(op): origs.add(op) orig_to_dist[os.path.basename(op)] = similar_dists[i] break res_dir = os.path.join(work, f"results_{sanitize(char)}") os.makedirs(res_dir, exist_ok=True) for p in origs: shutil.copy(p, os.path.join(res_dir, os.path.basename(p))) t7 = time.time(); L(f"[7/8] Collected: {len(origs)} ({t7-t6:.0f}s)") # [8/8] Tag prog(0.8, desc="Tagging...") char_tag = char if char != sanitize(show_name) else "" for p in get_imgs(res_dir): tags = tag(p, act_tag, char_tag) with open(os.path.splitext(p)[0] + ".txt", 'w') as f: f.write(", ".join(tags)) t8 = time.time(); L(f"[8/8] Tagged: {len(origs)} ({t8-t7:.0f}s)") # Log each image with distance L(f"\nResults (distance to ref):") for name, d in sorted(orig_to_dist.items(), key=lambda x: x[1]): L(f" {name}: {d:.1f}") # Zip prog(0.95, desc="Zipping...") zp = os.path.join(work, f"{sanitize(char)}_dataset.zip") with zipfile.ZipFile(zp, 'w', zipfile.ZIP_DEFLATED) as z: for p in get_imgs(res_dir) + [os.path.splitext(p)[0]+".txt" for p in get_imgs(res_dir)]: if os.path.exists(p): z.write(p, os.path.basename(p)) # Copy ZIP to persistent temp location (Gradio needs file to exist after return) final_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip", prefix=f"{sanitize(char)}_").name shutil.copy(zp, final_zip) L(f"\nDone! {len(origs)} images, total {t8-t0:.0f}s"); prog(1.0, desc="Complete!") return final_zip, "\n".join(log) except Exception as e: import traceback return None, "\n".join(log) + f"\n\nERROR: {e}\n{traceback.format_exc()}" finally: # Clean up work directory (ZIP already copied out) if os.path.exists(work): shutil.rmtree(work, ignore_errors=True) # ============================================================================= # UI # ============================================================================= css = """ .gradio-container { padding-top: 10px !important; } .compact-group { margin-bottom: 8px !important; } """ with gr.Blocks(title="SD Dataset Automaker: Fancaps → Face Crop (YOLO) → Similarity (Siamese) → WD Tagger → ZIP") as demo: gr.Markdown("### SD Dataset Automaker: Fancaps → Face Crop (YOLO) → Similarity (Siamese) → WD Tagger → ZIP") with gr.Row(): with gr.Column(scale=3): # Compact input group with gr.Group(): with gr.Row(): query = gr.Textbox( label="Anime / Movie / Fancaps URL", placeholder="'Cowboy Bebop' or paste URL", scale=3 ) char = gr.Textbox(label="Character (optional, appends to tags)", placeholder="spike_spiegel", scale=2) with gr.Row(): ref_imgs = gr.Gallery( label="Reference Face Image(s)", columns=4, height=100, interactive=True, object_fit="scale-down", scale=3, ) run_btn = gr.Button("Generate Dataset", variant="primary", size="lg", scale=1) # Hidden File input for MCP compatibility (Gallery $ref schema bug persists in Gradio 6.0.1) ref_files = gr.File( label="Reference Images (MCP)", file_count="multiple", file_types=["image"], visible=False, ) # gr.Examples + gr.Gallery works in Gradio 5.46.0+ (PR #11787) gr.Examples( examples=[ ["https://fancaps.net/anime/showimages.php?3092-Cowboy_Bebop", "spike_spiegel", EXAMPLES], ], inputs=[query, char, ref_imgs], label="Example (click to load)", ) # Advanced settings in accordion with gr.Accordion("Advanced Settings", open=False): with gr.Row(): max_img = gr.Slider(50, 500, 200, step=50, label="Max Downloads (frames to scrape)") thresh = gr.Slider(20, 60, 32, step=1, label="Face Similarity (lower=stricter)") with gr.Row(): act_tag = gr.Textbox(label="Trigger Word (prepends to captions)", placeholder="e.g. sks_style", scale=2) anime_cb = gr.Checkbox(label="Anime", value=True, scale=1) movies_cb = gr.Checkbox(label="Movies", scale=1) tv_cb = gr.Checkbox(label="TV", scale=1) with gr.Column(scale=1): out_file = gr.File(label="Download ZIP", interactive=False) with gr.Accordion("Log", open=True): out_log = gr.Textbox(label="", lines=12, max_lines=50, show_label=False, autoscroll=False) gr.Markdown("*CPU: ~5-10 min/run*") def process(q, c, imgs, files, mi, th, at, an, mo, tv, prog=gr.Progress()): if not q: gr.Warning("Enter anime name or URL") return None, "" # Collect paths from Gallery (imgs) or File input (files) paths = [] for item in (imgs or []): p = item[0] if isinstance(item, (list, tuple)) else item if p and os.path.exists(p): paths.append(p) if not paths and files: for f in (files if isinstance(files, list) else [files]): fp = f.name if hasattr(f, 'name') else str(f) if fp and os.path.exists(fp): paths.append(fp) if not paths: gr.Warning("Upload reference images or click 'Load Example'") return None, "" if 'fancaps.net' in q: gr.Info("Direct URL detected") else: gr.Info(f"Searching: {q}") zp, log = run(q, c, paths, mi, th, at, an, mo, tv, prog) if zp: gr.Info("Done!") return zp, log run_btn.click(process, [query, char, ref_imgs, ref_files, max_img, thresh, act_tag, anime_cb, movies_cb, tv_cb], [out_file, out_log]) def run_cli(): """CLI mode with cloudscraper for Cloudflare bypass""" # Use cloudscraper for CLI (bypasses Cloudflare on local/residential IPs) init_session(use_cloudscraper=True) parser = argparse.ArgumentParser(description="SD Dataset Automaker - Anime character dataset generator") parser.add_argument("--title", "-t", required=True, help="Anime name or fancaps.net URL") parser.add_argument("--image", "-i", nargs="+", required=True, help="Reference face images (1-5)") parser.add_argument("--char", "-c", default="", help="Character name (optional, appends to tags)") parser.add_argument("--max", "-m", type=int, default=200, help="Max frames to scrape (default: 200)") parser.add_argument("--thresh", type=float, default=32.0, help="Face similarity threshold, lower=stricter (default: 32)") parser.add_argument("--tag", default="", help="Trigger word to prepend to captions") parser.add_argument("--anime", action="store_true", default=True, help="Search anime (default)") parser.add_argument("--movies", action="store_true", help="Search movies") parser.add_argument("--tv", action="store_true", help="Search TV") parser.add_argument("--output", "-o", default=".", help="Output directory (default: current)") args = parser.parse_args() # Validate images ref_imgs = [p for p in args.image if os.path.exists(p)] if not ref_imgs: print(f"ERROR: No valid reference images found: {args.image}") sys.exit(1) print(f"SD Dataset Automaker - CLI Mode") print(f" Title: {args.title}") print(f" Refs: {len(ref_imgs)} images") print(f" Char: {args.char or '(auto from title)'}") print() zp, log = run( query=args.title, char=args.char, examples=ref_imgs, max_img=args.max, thresh=args.thresh, act_tag=args.tag, anime=args.anime, movies=args.movies, tv=args.tv, cli_mode=True ) if zp: # Copy to output dir out_path = os.path.join(args.output, os.path.basename(zp)) shutil.copy(zp, out_path) print(f"\nSaved: {out_path}") else: print(f"\nFailed!") sys.exit(1) if __name__ == "__main__": # CLI mode if args provided, else Gradio UI if len(sys.argv) > 1: run_cli() else: # Gradio UI mode allowed_dir = os.path.dirname(os.path.abspath(__file__)) demo.launch( server_name="0.0.0.0", server_port=7860, mcp_server=True, show_error=True, allowed_paths=[allowed_dir], css=css, )