File size: 5,520 Bytes
3f20604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr
import joblib
import numpy as np
import re

# ----------------------------
# Load the trained model
# ----------------------------
model = joblib.load("spam_model.joblib")

# ----------------------------
# Text normalization (optional but helps)
# ----------------------------
_url = re.compile(r'https?://\S+|www\.\S+')
_email = re.compile(r'\b[\w\.-]+@[\w\.-]+\.\w+\b')
_num = re.compile(r'\b\d[\d,.\-:/]*\b')

def normalize_text(t: str) -> str:
    t = t.strip().lower()
    t = _url.sub(' __url__ ', t)
    t = _email.sub(' __email__ ', t)
    t = _num.sub(' __number__ ', t)
    return t

# ----------------------------
# Prediction function with confidence
# ----------------------------
def predict_with_confidence(text: str):
    text_norm = normalize_text(text)
    _input = [text_norm if text_norm else text]

    pred = int(model.predict(_input)[0])

    if hasattr(model, "predict_proba"):
        proba = float(model.predict_proba(_input)[0][1])  # spam prob
    else:
        score = float(model.decision_function(_input)[0])
        proba = 1 / (1 + np.exp(-score))  # sigmoid

    label = "SPAM 🚨" if pred == 1 else "HAM ✅"
    return label, proba

# ----------------------------
# Custom CSS
# ----------------------------
CUSTOM_CSS = """
:root {
  --brand: #0ea5e9;
  --brand-2: #0284c7;
  --success: #22c55e;
  --danger: #ef4444;
  --card-bg: #0b1220;
  --ink: #e5e7eb;
}
.gradio-container {max-width: 2100px !important;}
#app-card {
  background: linear-gradient(135deg, #0b1220 0%, #0f172a 100%);
  color: var(--ink);
  border-radius: 18px;
  padding: 28px;
  box-shadow: 0 10px 30px rgba(0,0,0,0.35);
  border: 1px solid rgba(255,255,255,0.08);
}
#title {font-size: 28px;font-weight: 800;letter-spacing: 0.2px;}
.subtitle {opacity: 0.85;margin-top: 2px;font-size: 14px;}
.badge {
  display: inline-block;padding: 4px 10px;border-radius: 999px;
  background: linear-gradient(135deg, var(--brand) 0%, var(--brand-2) 100%);
  color: white;font-weight: 600;font-size: 12px;
}
#predict-btn > button {
  background: linear-gradient(135deg, var(--brand) 0%, var(--brand-2) 100%) !important;
  border: none !important;color: white !important;font-weight: 700 !important;
  border-radius: 10px !important;
}
#clear-btn > button {
  background: transparent !important;border: 1px solid rgba(255,255,255,0.15) !important;
  color: var(--ink) !important;font-weight: 600 !important;border-radius: 10px !important;
}
.result-card {
  border-radius: 14px;padding: 14px 16px;border: 1px solid rgba(255,255,255,0.08);
  display: flex;align-items: center;gap: 10px;
}
.result-label {font-size: 18px;font-weight: 800;}
.confidence-wrap {display: flex;align-items: center;gap: 10px;}
.confidence-bar {
  height: 10px;border-radius: 999px;flex: 1;
  background: linear-gradient(90deg, var(--danger), var(--success));
  position: relative;overflow: hidden;
}
.confidence-fill {
  position: absolute;top: 0;left: 0;bottom: 0;
  background: rgba(255,255,255,0.9);
  mix-blend-mode: overlay;
}
.footer {opacity: 0.7;font-size: 12px;margin-top: 8px;}
"""

# ----------------------------
# UI Prediction wrapper
# ----------------------------
def ui_predict(msg):
    label, proba = predict_with_confidence(msg)
    pct = int(round(proba * 100))
    color = "var(--danger)" if "SPAM" in label else "var(--success)"
    styled_label = f"<span style='color:{color}'>{label}</span>"
    html = f"""
    <div class="result-card">
      <div class="result-label">{styled_label}</div>
      <div class="confidence-wrap" style="flex:1">
        <div style="min-width:120px; text-align:right; font-weight:700;">{pct}%</div>
        <div class="confidence-bar">
          <div class="confidence-fill" style="width:{pct}%;"></div>
        </div>
      </div>
    </div>
    """
    return html

# ----------------------------
# Gradio App
# ----------------------------
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_id="app-card"):
        gr.HTML("""
          <div id="title">📩 SMS Spam Classifier <span class="badge">TF-IDF + Logistic Regression</span></div>
          <div class="subtitle">Type an SMS below and get an instant prediction with confidence.</div>
        """)
        with gr.Row():
            msg = gr.Textbox(
                label="Your message",
                placeholder="e.g., Congratulations! You have won a FREE vacation. Text WIN to 90909 now!",
                lines=5
            )
        with gr.Row():
            predict_btn = gr.Button("Predict", elem_id="predict-btn")
            clear_btn = gr.Button("Clear", elem_id="clear-btn")
        result = gr.HTML(label="Result")

        with gr.Accordion("Try examples", open=False):
            gr.Examples(
                examples=[
                    ["Hey, are we still meeting at 7 tonight?"],
                    ["Don’t forget to bring your homework tomorrow."],
                    ["URGENT! Claim your £1000 cash prize by calling 0800-123-456."],
                    ["Free entry in 2 a weekly comp for a chance to win an iPhone. Text WIN to 88888."]
                ],
                inputs=[msg]
            )
        gr.Markdown('<div class="footer">Tip: spam words like "free", "win", "claim", "prize" increase the spam score.</div>')

        predict_btn.click(fn=ui_predict, inputs=msg, outputs=result)
        clear_btn.click(lambda: "", [], [msg])
        msg.submit(fn=ui_predict, inputs=msg, outputs=result)

if __name__ == "__main__":
    demo.launch()