Spaces:
Sleeping
Sleeping
Commit
·
1d46eb9
1
Parent(s):
cfa5d44
Upd vietnamese transl
Browse files- Dockerfile +3 -0
- README.md +12 -12
- app.py +45 -9
- requirements.txt +2 -0
- trans_test.py +78 -0
- utils/processor.py +30 -18
- utils/rag.py +23 -8
- vi/README.md +95 -0
- vi/__init__.py +10 -0
- vi/download.py +89 -0
- vi/processing.py +95 -0
- vi/translator.py +266 -0
Dockerfile
CHANGED
|
@@ -16,6 +16,9 @@ RUN pip install --upgrade pip && pip install --no-cache-dir -r requirements.txt
|
|
| 16 |
# Copy the application
|
| 17 |
COPY --chown=user . .
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
# Hugging Face cache setup
|
| 20 |
ENV HF_HOME="$HOME/.cache/huggingface"
|
| 21 |
ENV SENTENCE_TRANSFORMERS_HOME="$HOME/.cache/huggingface/sentence-transformers"
|
|
|
|
| 16 |
# Copy the application
|
| 17 |
COPY --chown=user . .
|
| 18 |
|
| 19 |
+
# Download Vietnamese translation model
|
| 20 |
+
RUN python vi/download.py
|
| 21 |
+
|
| 22 |
# Hugging Face cache setup
|
| 23 |
ENV HF_HOME="$HOME/.cache/huggingface"
|
| 24 |
ENV SENTENCE_TRANSFORMERS_HOME="$HOME/.cache/huggingface/sentence-transformers"
|
README.md
CHANGED
|
@@ -1,32 +1,32 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: ⚕️
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: apache-2.0
|
| 9 |
-
short_description:
|
| 10 |
---
|
| 11 |
|
| 12 |
## Quick Access:
|
| 13 |
|
| 14 |
-
[HF Space](https://huggingface.co/spaces/
|
| 15 |
|
| 16 |
-
[MedDialog-100k](https://huggingface.co/datasets/
|
| 17 |
|
| 18 |
-
[MedDialog-100k](https://huggingface.co/datasets/
|
| 19 |
|
| 20 |
-
[PubMedQA-Labelled](https://huggingface.co/datasets/
|
| 21 |
|
| 22 |
-
[PubMedQA-Unlabelled](https://huggingface.co/datasets/
|
| 23 |
|
| 24 |
-
[PubMedQA-Mapper](https://huggingface.co/datasets/
|
| 25 |
|
| 26 |
|
| 27 |
## CURL Request Instruction
|
| 28 |
-
[Request Doc](https://huggingface.co/spaces/
|
| 29 |
|
| 30 |
## License
|
| 31 |
-
[Apache-2.0 LICENSE](https://huggingface.co/spaces/
|
| 32 |
|
|
|
|
| 1 |
---
|
| 2 |
+
title: MedVietAI Processing
|
| 3 |
emoji: ⚕️
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: apache-2.0
|
| 9 |
+
short_description: Data processing with en-vi translation. Derived from 500k mi
|
| 10 |
---
|
| 11 |
|
| 12 |
## Quick Access:
|
| 13 |
|
| 14 |
+
[HF Space](https://huggingface.co/spaces/MedVietAI/processing)
|
| 15 |
|
| 16 |
+
[MedDialog-100k](https://huggingface.co/datasets/MedAI-COS30018/MedDialog-EN-100k)
|
| 17 |
|
| 18 |
+
[MedDialog-100k](https://huggingface.co/datasets/MedAI-COS30018/MedDialog-EN-10k)
|
| 19 |
|
| 20 |
+
[PubMedQA-Labelled](https://huggingface.co/datasets/MedAI-COS30018/PubMedQA-L)
|
| 21 |
|
| 22 |
+
[PubMedQA-Unlabelled](https://huggingface.co/datasets/MedAI-COS30018/PubMedQA-U)
|
| 23 |
|
| 24 |
+
[PubMedQA-Mapper](https://huggingface.co/datasets/MedAI-COS30018/PubMedQA-MAP)
|
| 25 |
|
| 26 |
|
| 27 |
## CURL Request Instruction
|
| 28 |
+
[Request Doc](https://huggingface.co/spaces/MedVietAI/processing/blob/main/REQUEST.md)
|
| 29 |
|
| 30 |
## License
|
| 31 |
+
[Apache-2.0 LICENSE](https://huggingface.co/spaces/MedVietAI/processing/blob/main/LICENSE.txt)
|
| 32 |
|
app.py
CHANGED
|
@@ -18,6 +18,7 @@ from utils.drive_saver import DriveSaver
|
|
| 18 |
from utils.llm import Paraphraser
|
| 19 |
from utils.schema import CentralisedWriter
|
| 20 |
from utils.token import get_credentials, exchange_code, build_auth_url
|
|
|
|
| 21 |
|
| 22 |
# ────────── Log ───────────
|
| 23 |
logger = logging.getLogger("app")
|
|
@@ -53,6 +54,9 @@ paraphraser = Paraphraser(
|
|
| 53 |
gemini_model_hard=os.getenv("GEMINI_MODEL_HARD", "gemini-2.5-flash"),
|
| 54 |
)
|
| 55 |
|
|
|
|
|
|
|
|
|
|
| 56 |
app = FastAPI(title="Medical Dataset Augmenter", version="1.1.0")
|
| 57 |
|
| 58 |
STATE_LOCK = threading.Lock()
|
|
@@ -85,6 +89,7 @@ class ProcessParams(BaseModel):
|
|
| 85 |
sample_limit: Optional[int] = None # Set data sampling if needed
|
| 86 |
seed: int = 42
|
| 87 |
rag_processing: bool = False # Enable RAG-specific processing
|
|
|
|
| 88 |
|
| 89 |
def set_state(**kwargs):
|
| 90 |
with STATE_LOCK:
|
|
@@ -122,6 +127,14 @@ def root():
|
|
| 122 |
<div class="section">
|
| 123 |
<h2>⚡ Quick Actions</h2>
|
| 124 |
<p>Click a button below to start processing a dataset with default augmentation parameters.</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
<button onclick="startJob('healthcaremagic')">▶ProcAugment HealthCareMagic (100k)</button><br>
|
| 126 |
<button onclick="startJob('icliniq')">▶ProcAugment iCliniq (10k-derived)</button><br>
|
| 127 |
<button onclick="startJob('pubmedqa_l')">▶ProcAugment PubMedQA (Labelled)</button><br>
|
|
@@ -155,10 +168,10 @@ def root():
|
|
| 155 |
<script>
|
| 156 |
async function startJob(dataset) {{
|
| 157 |
const log = document.getElementById("log");
|
| 158 |
-
const
|
| 159 |
-
const
|
| 160 |
|
| 161 |
-
log.innerHTML = "⏳ Starting " +
|
| 162 |
try {{
|
| 163 |
const resp = await fetch("/process/" + dataset, {{
|
| 164 |
method: "POST",
|
|
@@ -177,7 +190,8 @@ def root():
|
|
| 177 |
}},
|
| 178 |
sample_limit: null, // Sample down (currently disabled)
|
| 179 |
seed: 42,
|
| 180 |
-
rag_processing:
|
|
|
|
| 181 |
}})
|
| 182 |
}});
|
| 183 |
const data = await resp.json();
|
|
@@ -193,14 +207,18 @@ def root():
|
|
| 193 |
|
| 194 |
async function startRagJob(dataset) {{
|
| 195 |
const log = document.getElementById("log");
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
| 197 |
try {{
|
| 198 |
const resp = await fetch("/rag/" + dataset, {{
|
| 199 |
method: "POST",
|
| 200 |
headers: {{ "Content-Type": "application/json" }},
|
| 201 |
body: JSON.stringify({{
|
| 202 |
sample_limit: null,
|
| 203 |
-
seed: 42
|
|
|
|
| 204 |
}})
|
| 205 |
}});
|
| 206 |
const data = await resp.json();
|
|
@@ -366,6 +384,18 @@ def _run_job(dataset_key: str, params: ProcessParams):
|
|
| 366 |
# Writer
|
| 367 |
writer = CentralisedWriter(jsonl_path=jsonl_path, csv_path=csv_path)
|
| 368 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
if params.rag_processing:
|
| 370 |
# RAG processing mode
|
| 371 |
set_state(message="RAG processing", progress=0.1)
|
|
@@ -376,20 +406,26 @@ def _run_job(dataset_key: str, params: ProcessParams):
|
|
| 376 |
nvidia_model=os.getenv("NVIDIA_MODEL", "meta/llama-3.1-8b-instruct"),
|
| 377 |
sample_limit=params.sample_limit,
|
| 378 |
seed=params.seed,
|
| 379 |
-
progress_cb=lambda p, msg=None: set_state(progress=p, message=msg or STATE["message"])
|
|
|
|
| 380 |
)
|
| 381 |
else:
|
| 382 |
# Standard SFT processing mode
|
| 383 |
set_state(message="SFT processing", progress=0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
count, stats = process_file_into_sft(
|
| 385 |
dataset_key=dataset_key,
|
| 386 |
input_path=local_path,
|
| 387 |
writer=writer,
|
| 388 |
paraphraser=paraphraser,
|
| 389 |
-
augment_opts=
|
| 390 |
sample_limit=params.sample_limit,
|
| 391 |
seed=params.seed,
|
| 392 |
-
progress_cb=lambda p, msg=None: set_state(progress=p, message=msg or STATE["message"])
|
|
|
|
| 393 |
)
|
| 394 |
logger.info(f"[JOB] Processed dataset={dataset_key} rows={count} stats={stats}")
|
| 395 |
writer.close()
|
|
|
|
| 18 |
from utils.llm import Paraphraser
|
| 19 |
from utils.schema import CentralisedWriter
|
| 20 |
from utils.token import get_credentials, exchange_code, build_auth_url
|
| 21 |
+
from vi.translator import VietnameseTranslator
|
| 22 |
|
| 23 |
# ────────── Log ───────────
|
| 24 |
logger = logging.getLogger("app")
|
|
|
|
| 54 |
gemini_model_hard=os.getenv("GEMINI_MODEL_HARD", "gemini-2.5-flash"),
|
| 55 |
)
|
| 56 |
|
| 57 |
+
# Vietnamese translator
|
| 58 |
+
vietnamese_translator = VietnameseTranslator()
|
| 59 |
+
|
| 60 |
app = FastAPI(title="Medical Dataset Augmenter", version="1.1.0")
|
| 61 |
|
| 62 |
STATE_LOCK = threading.Lock()
|
|
|
|
| 89 |
sample_limit: Optional[int] = None # Set data sampling if needed
|
| 90 |
seed: int = 42
|
| 91 |
rag_processing: bool = False # Enable RAG-specific processing
|
| 92 |
+
vietnamese_translation: bool = False # Enable Vietnamese translation
|
| 93 |
|
| 94 |
def set_state(**kwargs):
|
| 95 |
with STATE_LOCK:
|
|
|
|
| 127 |
<div class="section">
|
| 128 |
<h2>⚡ Quick Actions</h2>
|
| 129 |
<p>Click a button below to start processing a dataset with default augmentation parameters.</p>
|
| 130 |
+
|
| 131 |
+
<div style="margin-bottom: 15px; padding: 10px; background: #f8f9fa; border-radius: 5px; border-left: 4px solid #2d89ef;">
|
| 132 |
+
<label style="display: flex; align-items: center; cursor: pointer;">
|
| 133 |
+
<input type="checkbox" id="vietnameseTranslation" style="margin-right: 8px; transform: scale(1.2);">
|
| 134 |
+
<strong>🇻🇳 Vietnamese Translation</strong> - Translate all content to Vietnamese before processing
|
| 135 |
+
</label>
|
| 136 |
+
</div>
|
| 137 |
+
|
| 138 |
<button onclick="startJob('healthcaremagic')">▶ProcAugment HealthCareMagic (100k)</button><br>
|
| 139 |
<button onclick="startJob('icliniq')">▶ProcAugment iCliniq (10k-derived)</button><br>
|
| 140 |
<button onclick="startJob('pubmedqa_l')">▶ProcAugment PubMedQA (Labelled)</button><br>
|
|
|
|
| 168 |
<script>
|
| 169 |
async function startJob(dataset) {{
|
| 170 |
const log = document.getElementById("log");
|
| 171 |
+
const vietnameseToggle = document.getElementById("vietnameseTranslation");
|
| 172 |
+
const isVietnameseMode = vietnameseToggle.checked;
|
| 173 |
|
| 174 |
+
log.innerHTML = "⏳ Starting job for <b>" + dataset + "</b>" + (isVietnameseMode ? " with Vietnamese translation" : "") + "...";
|
| 175 |
try {{
|
| 176 |
const resp = await fetch("/process/" + dataset, {{
|
| 177 |
method: "POST",
|
|
|
|
| 190 |
}},
|
| 191 |
sample_limit: null, // Sample down (currently disabled)
|
| 192 |
seed: 42,
|
| 193 |
+
rag_processing: false,
|
| 194 |
+
vietnamese_translation: isVietnameseMode
|
| 195 |
}})
|
| 196 |
}});
|
| 197 |
const data = await resp.json();
|
|
|
|
| 207 |
|
| 208 |
async function startRagJob(dataset) {{
|
| 209 |
const log = document.getElementById("log");
|
| 210 |
+
const vietnameseToggle = document.getElementById("vietnameseTranslation");
|
| 211 |
+
const isVietnameseMode = vietnameseToggle.checked;
|
| 212 |
+
|
| 213 |
+
log.innerHTML = "⏳ Starting RAG processing for <b>" + dataset + "</b>" + (isVietnameseMode ? " with Vietnamese translation" : "") + "...";
|
| 214 |
try {{
|
| 215 |
const resp = await fetch("/rag/" + dataset, {{
|
| 216 |
method: "POST",
|
| 217 |
headers: {{ "Content-Type": "application/json" }},
|
| 218 |
body: JSON.stringify({{
|
| 219 |
sample_limit: null,
|
| 220 |
+
seed: 42,
|
| 221 |
+
vietnamese_translation: isVietnameseMode
|
| 222 |
}})
|
| 223 |
}});
|
| 224 |
const data = await resp.json();
|
|
|
|
| 384 |
# Writer
|
| 385 |
writer = CentralisedWriter(jsonl_path=jsonl_path, csv_path=csv_path)
|
| 386 |
|
| 387 |
+
# Load translator if Vietnamese translation is requested
|
| 388 |
+
translator = None
|
| 389 |
+
if params.vietnamese_translation:
|
| 390 |
+
set_state(message="Loading Vietnamese translator", progress=0.05)
|
| 391 |
+
try:
|
| 392 |
+
vietnamese_translator.load_model()
|
| 393 |
+
translator = vietnamese_translator
|
| 394 |
+
logger.info("✅ Vietnamese translator loaded successfully")
|
| 395 |
+
except Exception as e:
|
| 396 |
+
logger.error(f"❌ Failed to load Vietnamese translator: {e}")
|
| 397 |
+
set_state(message=f"Warning: Vietnamese translation failed - {e}", progress=0.1)
|
| 398 |
+
|
| 399 |
if params.rag_processing:
|
| 400 |
# RAG processing mode
|
| 401 |
set_state(message="RAG processing", progress=0.1)
|
|
|
|
| 406 |
nvidia_model=os.getenv("NVIDIA_MODEL", "meta/llama-3.1-8b-instruct"),
|
| 407 |
sample_limit=params.sample_limit,
|
| 408 |
seed=params.seed,
|
| 409 |
+
progress_cb=lambda p, msg=None: set_state(progress=p, message=msg or STATE["message"]),
|
| 410 |
+
translator=translator
|
| 411 |
)
|
| 412 |
else:
|
| 413 |
# Standard SFT processing mode
|
| 414 |
set_state(message="SFT processing", progress=0.1)
|
| 415 |
+
# Add Vietnamese translation flag to augment options
|
| 416 |
+
augment_opts = params.augment.dict()
|
| 417 |
+
augment_opts["vietnamese_translation"] = params.vietnamese_translation
|
| 418 |
+
|
| 419 |
count, stats = process_file_into_sft(
|
| 420 |
dataset_key=dataset_key,
|
| 421 |
input_path=local_path,
|
| 422 |
writer=writer,
|
| 423 |
paraphraser=paraphraser,
|
| 424 |
+
augment_opts=augment_opts,
|
| 425 |
sample_limit=params.sample_limit,
|
| 426 |
seed=params.seed,
|
| 427 |
+
progress_cb=lambda p, msg=None: set_state(progress=p, message=msg or STATE["message"]),
|
| 428 |
+
translator=translator
|
| 429 |
)
|
| 430 |
logger.info(f"[JOB] Processed dataset={dataset_key} rows={count} stats={stats}")
|
| 431 |
writer.close()
|
requirements.txt
CHANGED
|
@@ -11,3 +11,5 @@ google-auth-oauthlib
|
|
| 11 |
orjson
|
| 12 |
ftfy
|
| 13 |
langid
|
|
|
|
|
|
|
|
|
| 11 |
orjson
|
| 12 |
ftfy
|
| 13 |
langid
|
| 14 |
+
transformers
|
| 15 |
+
torch
|
trans_test.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Test script for Vietnamese translation functionality
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
import logging
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
|
| 11 |
+
# Add the current directory to Python path
|
| 12 |
+
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
|
| 13 |
+
|
| 14 |
+
from vi.translator import VietnameseTranslator
|
| 15 |
+
|
| 16 |
+
# Setup logging
|
| 17 |
+
logging.basicConfig(level=logging.INFO)
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
|
| 20 |
+
def test_translation():
|
| 21 |
+
"""Test the Vietnamese translation functionality"""
|
| 22 |
+
load_dotenv()
|
| 23 |
+
|
| 24 |
+
# Initialize translator
|
| 25 |
+
translator = VietnameseTranslator()
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
# Load the model
|
| 29 |
+
logger.info("Loading translation model...")
|
| 30 |
+
translator.load_model()
|
| 31 |
+
logger.info("✅ Model loaded successfully")
|
| 32 |
+
|
| 33 |
+
# Test single text translation
|
| 34 |
+
test_text = "Hello, how are you today? I hope you are feeling well."
|
| 35 |
+
logger.info(f"Original text: {test_text}")
|
| 36 |
+
|
| 37 |
+
translated = translator.translate_text(test_text)
|
| 38 |
+
logger.info(f"Translated text: {translated}")
|
| 39 |
+
|
| 40 |
+
# Test batch translation
|
| 41 |
+
test_texts = [
|
| 42 |
+
"What are the symptoms of diabetes?",
|
| 43 |
+
"How do I treat a headache?",
|
| 44 |
+
"What is the recommended dosage for this medication?"
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
logger.info("Testing batch translation...")
|
| 48 |
+
batch_translated = translator.translate_batch(test_texts)
|
| 49 |
+
|
| 50 |
+
for i, (original, translated) in enumerate(zip(test_texts, batch_translated)):
|
| 51 |
+
logger.info(f"Batch {i+1}:")
|
| 52 |
+
logger.info(f" Original: {original}")
|
| 53 |
+
logger.info(f" Translated: {translated}")
|
| 54 |
+
|
| 55 |
+
# Test dictionary translation
|
| 56 |
+
test_dict = {
|
| 57 |
+
"instruction": "Answer the medical question",
|
| 58 |
+
"input": "What are the side effects of aspirin?",
|
| 59 |
+
"output": "Common side effects include stomach irritation and bleeding."
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
logger.info("Testing dictionary translation...")
|
| 63 |
+
dict_translated = translator.translate_dict(test_dict, ["instruction", "input", "output"])
|
| 64 |
+
|
| 65 |
+
logger.info("Dictionary translation result:")
|
| 66 |
+
for key, value in dict_translated.items():
|
| 67 |
+
logger.info(f" {key}: {value}")
|
| 68 |
+
|
| 69 |
+
logger.info("🎉 All translation tests completed successfully!")
|
| 70 |
+
return True
|
| 71 |
+
|
| 72 |
+
except Exception as e:
|
| 73 |
+
logger.error(f"❌ Translation test failed: {e}")
|
| 74 |
+
return False
|
| 75 |
+
|
| 76 |
+
if __name__ == "__main__":
|
| 77 |
+
success = test_translation()
|
| 78 |
+
sys.exit(0 if success else 1)
|
utils/processor.py
CHANGED
|
@@ -7,6 +7,7 @@ from typing import Callable, Optional, Dict, Tuple
|
|
| 7 |
|
| 8 |
from utils.schema import sft_row
|
| 9 |
from utils import augment as A
|
|
|
|
| 10 |
|
| 11 |
# Logger
|
| 12 |
logger = logging.getLogger("processor")
|
|
@@ -40,7 +41,8 @@ def process_file_into_sft(
|
|
| 40 |
augment_opts: Dict,
|
| 41 |
sample_limit: Optional[int],
|
| 42 |
seed: int,
|
| 43 |
-
progress_cb: Optional[Callable[[float, str], None]]
|
|
|
|
| 44 |
) -> Tuple[int, Dict]:
|
| 45 |
random.seed(seed)
|
| 46 |
stats = {
|
|
@@ -68,13 +70,13 @@ def process_file_into_sft(
|
|
| 68 |
if key in ("healthcaremagic", "icliniq"):
|
| 69 |
count = _proc_med_dialog(source=key, path=input_path, writer=writer,
|
| 70 |
paraphraser=paraphraser, opts=augment_opts,
|
| 71 |
-
sample_limit=sample_limit, stats=stats, cb=progress_cb, dedupe_seen=dedupe_seen)
|
| 72 |
elif key == "pubmedqa_l":
|
| 73 |
-
count = _proc_pubmedqa_l(input_path, writer, paraphraser, augment_opts, sample_limit, stats, progress_cb, dedupe_seen=dedupe_seen)
|
| 74 |
elif key == "pubmedqa_u":
|
| 75 |
-
count = _proc_pubmedqa_u(input_path, writer, paraphraser, augment_opts, sample_limit, stats, progress_cb, dedupe_seen=dedupe_seen)
|
| 76 |
elif key == "pubmedqa_map":
|
| 77 |
-
count = _proc_pubmedqa_map(input_path, writer, paraphraser, augment_opts, sample_limit, stats, progress_cb, dedupe_seen=dedupe_seen)
|
| 78 |
else:
|
| 79 |
raise ValueError(f"Unknown dataset: {dataset_key}")
|
| 80 |
logger.info(f"[PROC] End dataset={dataset_key} stats={stats}")
|
|
@@ -135,7 +137,7 @@ def _apply_aug(instr: str, user: str, out: str, source: str, opts: Dict, paraphr
|
|
| 135 |
|
| 136 |
return instr, user, out, applied
|
| 137 |
|
| 138 |
-
def _commit_row(writer, source, rid, task, instr, user, out, opts, stats, aug_applied, extra_meta=None, dedupe_seen=None):
|
| 139 |
# Dedup entry
|
| 140 |
if dedupe_seen is not None:
|
| 141 |
fp = A.fingerprint(instr, user, out)
|
|
@@ -149,13 +151,23 @@ def _commit_row(writer, source, rid, task, instr, user, out, opts, stats, aug_ap
|
|
| 149 |
meta.update(extra_meta)
|
| 150 |
|
| 151 |
row = sft_row(instr, user, out, source=source, rid=rid, task=task, meta=meta)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
writer.write(row)
|
| 153 |
stats["written"] += 1
|
| 154 |
return True
|
| 155 |
|
| 156 |
# ——————————— dataset processors ———————————
|
| 157 |
|
| 158 |
-
def _proc_med_dialog(source, path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None):
|
| 159 |
count = 0
|
| 160 |
written = 0
|
| 161 |
for i, obj in enumerate(_iter_json_or_jsonl(path), start=1):
|
|
@@ -184,12 +196,12 @@ def _proc_med_dialog(source, path, writer, paraphraser, opts, sample_limit, stat
|
|
| 184 |
applied.append("consistency_flag")
|
| 185 |
|
| 186 |
# 2) If expansion is enabled, add augmented copies
|
| 187 |
-
_commit_row(writer, source, rid, "medical_dialogue", instr, user, out, opts, stats, ["base"] + applied, dedupe_seen=dedupe_seen)
|
| 188 |
# Add augmented copies if expand
|
| 189 |
if opts.get("expand", True):
|
| 190 |
for (u_aug, o_aug, aug_tags) in _build_variants(user, out, paraphraser, opts, stats):
|
| 191 |
rid_aug = f"{rid}-aug{random.randint(1000,9999)}"
|
| 192 |
-
_commit_row(writer, source, rid_aug, "medical_dialogue", instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen)
|
| 193 |
|
| 194 |
# Increment count only on success
|
| 195 |
count += 1
|
|
@@ -205,7 +217,7 @@ def _proc_med_dialog(source, path, writer, paraphraser, opts, sample_limit, stat
|
|
| 205 |
logger.info(f"[PROC] {source} done count={count} written={stats['written']} dedup_skipped={stats['dedup_skipped']}")
|
| 206 |
return count
|
| 207 |
|
| 208 |
-
def _proc_pubmedqa_l(path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None):
|
| 209 |
with open(path, "r", encoding="utf-8") as f:
|
| 210 |
data = json.load(f)
|
| 211 |
count = 0
|
|
@@ -236,12 +248,12 @@ def _proc_pubmedqa_l(path, writer, paraphraser, opts, sample_limit, stats, cb, d
|
|
| 236 |
|
| 237 |
instr, user, out, applied = _apply_aug(instr, user, out, "pubmedqa_l", opts, paraphraser, stats)
|
| 238 |
_commit_row(writer, "pubmedqa_l", rid, "biomedical_qa", instr, user, out, opts, stats, applied,
|
| 239 |
-
extra_meta={"year": v.get("YEAR"), "meshes": v.get("MESHES"), "labels": v.get("LABELS")}, dedupe_seen=dedupe_seen)
|
| 240 |
if opts.get("expand", True):
|
| 241 |
for (u_aug, o_aug, aug_tags) in _build_variants(user, out, paraphraser, opts, stats):
|
| 242 |
rid_aug = f"{rid}-aug{random.randint(1000,9999)}"
|
| 243 |
_commit_row(writer, "pubmedqa_l", rid_aug, "biomedical_qa",
|
| 244 |
-
instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen)
|
| 245 |
|
| 246 |
# Increment count only on success
|
| 247 |
count += 1
|
|
@@ -257,7 +269,7 @@ def _proc_pubmedqa_l(path, writer, paraphraser, opts, sample_limit, stats, cb, d
|
|
| 257 |
logger.info(f"[PROC] pubmedqa_l done count={count} written={stats['written']} dedup_skipped={stats['dedup_skipped']}")
|
| 258 |
return count
|
| 259 |
|
| 260 |
-
def _proc_pubmedqa_u(path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None):
|
| 261 |
with open(path, "r", encoding="utf-8") as f:
|
| 262 |
data = json.load(f)
|
| 263 |
count = 0
|
|
@@ -290,12 +302,12 @@ def _proc_pubmedqa_u(path, writer, paraphraser, opts, sample_limit, stats, cb, d
|
|
| 290 |
out = guess.strip()
|
| 291 |
|
| 292 |
instr, user, out, applied = _apply_aug(instr, user, out, "pubmedqa_u", opts, paraphraser, stats)
|
| 293 |
-
_commit_row(writer, "pubmedqa_u", str(k), "biomedical_qa_unlabeled", instr, user, out, opts, stats, applied, dedupe_seen=dedupe_seen)
|
| 294 |
if opts.get("expand", True):
|
| 295 |
for (u_aug, o_aug, aug_tags) in _build_variants(user, out, paraphraser, opts, stats):
|
| 296 |
rid_aug = f"{rid}-aug{random.randint(1000,9999)}"
|
| 297 |
_commit_row(writer, "pubmedqa_u", rid_aug, "biomedical_qa",
|
| 298 |
-
instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen)
|
| 299 |
|
| 300 |
# Increment count only on success
|
| 301 |
count += 1
|
|
@@ -311,7 +323,7 @@ def _proc_pubmedqa_u(path, writer, paraphraser, opts, sample_limit, stats, cb, d
|
|
| 311 |
logger.info(f"[PROC] pubmedqa_u done count={count} written={stats['written']} dedup_skipped={stats['dedup_skipped']}")
|
| 312 |
return count
|
| 313 |
|
| 314 |
-
def _proc_pubmedqa_map(path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None):
|
| 315 |
with open(path, "r", encoding="utf-8") as f:
|
| 316 |
obj = json.load(f)
|
| 317 |
|
|
@@ -383,14 +395,14 @@ def _proc_pubmedqa_map(path, writer, paraphraser, opts, sample_limit, stats, cb,
|
|
| 383 |
|
| 384 |
# Process the item
|
| 385 |
instr, user, out, applied = _apply_aug(instr, user, out, "pubmedqa_map", opts, paraphraser, stats)
|
| 386 |
-
_commit_row(writer, "pubmedqa_map", rid, "biomedical_qa", instr, user, out, opts, stats, applied, dedupe_seen=dedupe_seen)
|
| 387 |
|
| 388 |
# Handle expansion if enabled
|
| 389 |
if opts.get("expand", True):
|
| 390 |
for (u_aug, o_aug, aug_tags) in _build_variants(user, out, paraphraser, opts, stats):
|
| 391 |
rid_aug = f"{rid}-aug{random.randint(1000,9999)}"
|
| 392 |
_commit_row(writer, "pubmedqa_map", rid_aug, "biomedical_qa",
|
| 393 |
-
instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen)
|
| 394 |
|
| 395 |
# Increment count only on success
|
| 396 |
count += 1
|
|
|
|
| 7 |
|
| 8 |
from utils.schema import sft_row
|
| 9 |
from utils import augment as A
|
| 10 |
+
from vi.processing import translate_sft_row, should_translate, log_translation_stats
|
| 11 |
|
| 12 |
# Logger
|
| 13 |
logger = logging.getLogger("processor")
|
|
|
|
| 41 |
augment_opts: Dict,
|
| 42 |
sample_limit: Optional[int],
|
| 43 |
seed: int,
|
| 44 |
+
progress_cb: Optional[Callable[[float, str], None]],
|
| 45 |
+
translator=None
|
| 46 |
) -> Tuple[int, Dict]:
|
| 47 |
random.seed(seed)
|
| 48 |
stats = {
|
|
|
|
| 70 |
if key in ("healthcaremagic", "icliniq"):
|
| 71 |
count = _proc_med_dialog(source=key, path=input_path, writer=writer,
|
| 72 |
paraphraser=paraphraser, opts=augment_opts,
|
| 73 |
+
sample_limit=sample_limit, stats=stats, cb=progress_cb, dedupe_seen=dedupe_seen, translator=translator)
|
| 74 |
elif key == "pubmedqa_l":
|
| 75 |
+
count = _proc_pubmedqa_l(input_path, writer, paraphraser, augment_opts, sample_limit, stats, progress_cb, dedupe_seen=dedupe_seen, translator=translator)
|
| 76 |
elif key == "pubmedqa_u":
|
| 77 |
+
count = _proc_pubmedqa_u(input_path, writer, paraphraser, augment_opts, sample_limit, stats, progress_cb, dedupe_seen=dedupe_seen, translator=translator)
|
| 78 |
elif key == "pubmedqa_map":
|
| 79 |
+
count = _proc_pubmedqa_map(input_path, writer, paraphraser, augment_opts, sample_limit, stats, progress_cb, dedupe_seen=dedupe_seen, translator=translator)
|
| 80 |
else:
|
| 81 |
raise ValueError(f"Unknown dataset: {dataset_key}")
|
| 82 |
logger.info(f"[PROC] End dataset={dataset_key} stats={stats}")
|
|
|
|
| 137 |
|
| 138 |
return instr, user, out, applied
|
| 139 |
|
| 140 |
+
def _commit_row(writer, source, rid, task, instr, user, out, opts, stats, aug_applied, extra_meta=None, dedupe_seen=None, translator=None):
|
| 141 |
# Dedup entry
|
| 142 |
if dedupe_seen is not None:
|
| 143 |
fp = A.fingerprint(instr, user, out)
|
|
|
|
| 151 |
meta.update(extra_meta)
|
| 152 |
|
| 153 |
row = sft_row(instr, user, out, source=source, rid=rid, task=task, meta=meta)
|
| 154 |
+
|
| 155 |
+
# Apply Vietnamese translation if requested
|
| 156 |
+
if should_translate(opts.get("vietnamese_translation", False), translator):
|
| 157 |
+
try:
|
| 158 |
+
row = translate_sft_row(row, translator)
|
| 159 |
+
meta["vietnamese_translated"] = True
|
| 160 |
+
row["meta"] = meta
|
| 161 |
+
except Exception as e:
|
| 162 |
+
logger.error(f"Failed to translate SFT row: {e}")
|
| 163 |
+
|
| 164 |
writer.write(row)
|
| 165 |
stats["written"] += 1
|
| 166 |
return True
|
| 167 |
|
| 168 |
# ——————————— dataset processors ———————————
|
| 169 |
|
| 170 |
+
def _proc_med_dialog(source, path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None, translator=None):
|
| 171 |
count = 0
|
| 172 |
written = 0
|
| 173 |
for i, obj in enumerate(_iter_json_or_jsonl(path), start=1):
|
|
|
|
| 196 |
applied.append("consistency_flag")
|
| 197 |
|
| 198 |
# 2) If expansion is enabled, add augmented copies
|
| 199 |
+
_commit_row(writer, source, rid, "medical_dialogue", instr, user, out, opts, stats, ["base"] + applied, dedupe_seen=dedupe_seen, translator=translator)
|
| 200 |
# Add augmented copies if expand
|
| 201 |
if opts.get("expand", True):
|
| 202 |
for (u_aug, o_aug, aug_tags) in _build_variants(user, out, paraphraser, opts, stats):
|
| 203 |
rid_aug = f"{rid}-aug{random.randint(1000,9999)}"
|
| 204 |
+
_commit_row(writer, source, rid_aug, "medical_dialogue", instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen, translator=translator)
|
| 205 |
|
| 206 |
# Increment count only on success
|
| 207 |
count += 1
|
|
|
|
| 217 |
logger.info(f"[PROC] {source} done count={count} written={stats['written']} dedup_skipped={stats['dedup_skipped']}")
|
| 218 |
return count
|
| 219 |
|
| 220 |
+
def _proc_pubmedqa_l(path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None, translator=None):
|
| 221 |
with open(path, "r", encoding="utf-8") as f:
|
| 222 |
data = json.load(f)
|
| 223 |
count = 0
|
|
|
|
| 248 |
|
| 249 |
instr, user, out, applied = _apply_aug(instr, user, out, "pubmedqa_l", opts, paraphraser, stats)
|
| 250 |
_commit_row(writer, "pubmedqa_l", rid, "biomedical_qa", instr, user, out, opts, stats, applied,
|
| 251 |
+
extra_meta={"year": v.get("YEAR"), "meshes": v.get("MESHES"), "labels": v.get("LABELS")}, dedupe_seen=dedupe_seen, translator=translator)
|
| 252 |
if opts.get("expand", True):
|
| 253 |
for (u_aug, o_aug, aug_tags) in _build_variants(user, out, paraphraser, opts, stats):
|
| 254 |
rid_aug = f"{rid}-aug{random.randint(1000,9999)}"
|
| 255 |
_commit_row(writer, "pubmedqa_l", rid_aug, "biomedical_qa",
|
| 256 |
+
instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen, translator=translator)
|
| 257 |
|
| 258 |
# Increment count only on success
|
| 259 |
count += 1
|
|
|
|
| 269 |
logger.info(f"[PROC] pubmedqa_l done count={count} written={stats['written']} dedup_skipped={stats['dedup_skipped']}")
|
| 270 |
return count
|
| 271 |
|
| 272 |
+
def _proc_pubmedqa_u(path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None, translator=None):
|
| 273 |
with open(path, "r", encoding="utf-8") as f:
|
| 274 |
data = json.load(f)
|
| 275 |
count = 0
|
|
|
|
| 302 |
out = guess.strip()
|
| 303 |
|
| 304 |
instr, user, out, applied = _apply_aug(instr, user, out, "pubmedqa_u", opts, paraphraser, stats)
|
| 305 |
+
_commit_row(writer, "pubmedqa_u", str(k), "biomedical_qa_unlabeled", instr, user, out, opts, stats, applied, dedupe_seen=dedupe_seen, translator=translator)
|
| 306 |
if opts.get("expand", True):
|
| 307 |
for (u_aug, o_aug, aug_tags) in _build_variants(user, out, paraphraser, opts, stats):
|
| 308 |
rid_aug = f"{rid}-aug{random.randint(1000,9999)}"
|
| 309 |
_commit_row(writer, "pubmedqa_u", rid_aug, "biomedical_qa",
|
| 310 |
+
instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen, translator=translator)
|
| 311 |
|
| 312 |
# Increment count only on success
|
| 313 |
count += 1
|
|
|
|
| 323 |
logger.info(f"[PROC] pubmedqa_u done count={count} written={stats['written']} dedup_skipped={stats['dedup_skipped']}")
|
| 324 |
return count
|
| 325 |
|
| 326 |
+
def _proc_pubmedqa_map(path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None, translator=None):
|
| 327 |
with open(path, "r", encoding="utf-8") as f:
|
| 328 |
obj = json.load(f)
|
| 329 |
|
|
|
|
| 395 |
|
| 396 |
# Process the item
|
| 397 |
instr, user, out, applied = _apply_aug(instr, user, out, "pubmedqa_map", opts, paraphraser, stats)
|
| 398 |
+
_commit_row(writer, "pubmedqa_map", rid, "biomedical_qa", instr, user, out, opts, stats, applied, dedupe_seen=dedupe_seen, translator=translator)
|
| 399 |
|
| 400 |
# Handle expansion if enabled
|
| 401 |
if opts.get("expand", True):
|
| 402 |
for (u_aug, o_aug, aug_tags) in _build_variants(user, out, paraphraser, opts, stats):
|
| 403 |
rid_aug = f"{rid}-aug{random.randint(1000,9999)}"
|
| 404 |
_commit_row(writer, "pubmedqa_map", rid_aug, "biomedical_qa",
|
| 405 |
+
instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen, translator=translator)
|
| 406 |
|
| 407 |
# Increment count only on success
|
| 408 |
count += 1
|
utils/rag.py
CHANGED
|
@@ -7,6 +7,7 @@ from typing import Dict, List, Tuple, Optional, Callable
|
|
| 7 |
|
| 8 |
from utils.schema import sft_row
|
| 9 |
from utils.llm import NvidiaClient, KeyRotator
|
|
|
|
| 10 |
|
| 11 |
# Logger
|
| 12 |
logger = logging.getLogger("rag_processor")
|
|
@@ -165,7 +166,7 @@ class RAGProcessor:
|
|
| 165 |
return ""
|
| 166 |
|
| 167 |
def process_medical_dialog(self, source: str, path: str, writer, sample_limit: Optional[int],
|
| 168 |
-
stats: Dict, progress_cb: Optional[Callable], dedupe_seen: set = None) -> int:
|
| 169 |
"""Process medical dialogue datasets into RAG format"""
|
| 170 |
count = 0
|
| 171 |
written = 0
|
|
@@ -199,7 +200,7 @@ class RAGProcessor:
|
|
| 199 |
# Commit the RAG-formatted row
|
| 200 |
if self._commit_rag_row(writer, source, rid, "rag_medical_qa",
|
| 201 |
rag_instruction, rag_user, answer,
|
| 202 |
-
stats, dedupe_seen=dedupe_seen):
|
| 203 |
written += 1
|
| 204 |
|
| 205 |
count += 1
|
|
@@ -220,7 +221,7 @@ class RAGProcessor:
|
|
| 220 |
return count
|
| 221 |
|
| 222 |
def process_pubmedqa(self, source: str, path: str, writer, sample_limit: Optional[int],
|
| 223 |
-
stats: Dict, progress_cb: Optional[Callable], dedupe_seen: set = None) -> int:
|
| 224 |
"""Process PubMedQA datasets into RAG format"""
|
| 225 |
with open(path, "r", encoding="utf-8") as f:
|
| 226 |
data = json.load(f)
|
|
@@ -265,7 +266,7 @@ class RAGProcessor:
|
|
| 265 |
# Commit the RAG-formatted row
|
| 266 |
if self._commit_rag_row(writer, source, rid, "rag_biomedical_qa",
|
| 267 |
rag_instruction, rag_user, answer,
|
| 268 |
-
stats, dedupe_seen=dedupe_seen):
|
| 269 |
written += 1
|
| 270 |
|
| 271 |
count += 1
|
|
@@ -287,7 +288,7 @@ class RAGProcessor:
|
|
| 287 |
|
| 288 |
def _commit_rag_row(self, writer, source: str, rid: str, task: str,
|
| 289 |
instruction: str, user_input: str, output: str,
|
| 290 |
-
stats: Dict, dedupe_seen: set = None) -> bool:
|
| 291 |
"""Commit a RAG-formatted row to the writer"""
|
| 292 |
# Simple deduplication based on content hash
|
| 293 |
if dedupe_seen is not None:
|
|
@@ -299,6 +300,16 @@ class RAGProcessor:
|
|
| 299 |
|
| 300 |
meta = {"rag_processing": True, "format": "qca"}
|
| 301 |
row = sft_row(instruction, user_input, output, source=source, rid=rid, task=task, meta=meta)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
writer.write(row)
|
| 303 |
stats["written"] = stats.get("written", 0) + 1
|
| 304 |
return True
|
|
@@ -310,7 +321,8 @@ def process_file_into_rag(
|
|
| 310 |
nvidia_model: str,
|
| 311 |
sample_limit: Optional[int],
|
| 312 |
seed: int,
|
| 313 |
-
progress_cb: Optional[Callable[[float, str], None]]
|
|
|
|
| 314 |
) -> Tuple[int, Dict]:
|
| 315 |
"""Main entry point for RAG processing"""
|
| 316 |
random.seed(seed)
|
|
@@ -326,17 +338,20 @@ def process_file_into_rag(
|
|
| 326 |
dedupe_seen = set()
|
| 327 |
|
| 328 |
key = dataset_key.lower()
|
|
|
|
|
|
|
|
|
|
| 329 |
if key in ("healthcaremagic", "icliniq"):
|
| 330 |
count = rag_processor.process_medical_dialog(
|
| 331 |
source=key, path=input_path, writer=writer,
|
| 332 |
sample_limit=sample_limit, stats=stats,
|
| 333 |
-
progress_cb=progress_cb, dedupe_seen=dedupe_seen
|
| 334 |
)
|
| 335 |
elif key in ("pubmedqa_l", "pubmedqa_u", "pubmedqa_map"):
|
| 336 |
count = rag_processor.process_pubmedqa(
|
| 337 |
source=key, path=input_path, writer=writer,
|
| 338 |
sample_limit=sample_limit, stats=stats,
|
| 339 |
-
progress_cb=progress_cb, dedupe_seen=dedupe_seen
|
| 340 |
)
|
| 341 |
else:
|
| 342 |
raise ValueError(f"Unknown dataset for RAG processing: {dataset_key}")
|
|
|
|
| 7 |
|
| 8 |
from utils.schema import sft_row
|
| 9 |
from utils.llm import NvidiaClient, KeyRotator
|
| 10 |
+
from vi.processing import translate_rag_row, should_translate, log_translation_stats
|
| 11 |
|
| 12 |
# Logger
|
| 13 |
logger = logging.getLogger("rag_processor")
|
|
|
|
| 166 |
return ""
|
| 167 |
|
| 168 |
def process_medical_dialog(self, source: str, path: str, writer, sample_limit: Optional[int],
|
| 169 |
+
stats: Dict, progress_cb: Optional[Callable], dedupe_seen: set = None, translator=None, opts=None) -> int:
|
| 170 |
"""Process medical dialogue datasets into RAG format"""
|
| 171 |
count = 0
|
| 172 |
written = 0
|
|
|
|
| 200 |
# Commit the RAG-formatted row
|
| 201 |
if self._commit_rag_row(writer, source, rid, "rag_medical_qa",
|
| 202 |
rag_instruction, rag_user, answer,
|
| 203 |
+
stats, dedupe_seen=dedupe_seen, translator=translator, opts=opts):
|
| 204 |
written += 1
|
| 205 |
|
| 206 |
count += 1
|
|
|
|
| 221 |
return count
|
| 222 |
|
| 223 |
def process_pubmedqa(self, source: str, path: str, writer, sample_limit: Optional[int],
|
| 224 |
+
stats: Dict, progress_cb: Optional[Callable], dedupe_seen: set = None, translator=None, opts=None) -> int:
|
| 225 |
"""Process PubMedQA datasets into RAG format"""
|
| 226 |
with open(path, "r", encoding="utf-8") as f:
|
| 227 |
data = json.load(f)
|
|
|
|
| 266 |
# Commit the RAG-formatted row
|
| 267 |
if self._commit_rag_row(writer, source, rid, "rag_biomedical_qa",
|
| 268 |
rag_instruction, rag_user, answer,
|
| 269 |
+
stats, dedupe_seen=dedupe_seen, translator=translator, opts=opts):
|
| 270 |
written += 1
|
| 271 |
|
| 272 |
count += 1
|
|
|
|
| 288 |
|
| 289 |
def _commit_rag_row(self, writer, source: str, rid: str, task: str,
|
| 290 |
instruction: str, user_input: str, output: str,
|
| 291 |
+
stats: Dict, dedupe_seen: set = None, translator=None, opts=None) -> bool:
|
| 292 |
"""Commit a RAG-formatted row to the writer"""
|
| 293 |
# Simple deduplication based on content hash
|
| 294 |
if dedupe_seen is not None:
|
|
|
|
| 300 |
|
| 301 |
meta = {"rag_processing": True, "format": "qca"}
|
| 302 |
row = sft_row(instruction, user_input, output, source=source, rid=rid, task=task, meta=meta)
|
| 303 |
+
|
| 304 |
+
# Apply Vietnamese translation if requested
|
| 305 |
+
if should_translate(opts.get("vietnamese_translation", False) if opts else False, translator):
|
| 306 |
+
try:
|
| 307 |
+
row = translate_rag_row(row, translator)
|
| 308 |
+
meta["vietnamese_translated"] = True
|
| 309 |
+
row["meta"] = meta
|
| 310 |
+
except Exception as e:
|
| 311 |
+
logger.error(f"Failed to translate RAG row: {e}")
|
| 312 |
+
|
| 313 |
writer.write(row)
|
| 314 |
stats["written"] = stats.get("written", 0) + 1
|
| 315 |
return True
|
|
|
|
| 321 |
nvidia_model: str,
|
| 322 |
sample_limit: Optional[int],
|
| 323 |
seed: int,
|
| 324 |
+
progress_cb: Optional[Callable[[float, str], None]],
|
| 325 |
+
translator=None
|
| 326 |
) -> Tuple[int, Dict]:
|
| 327 |
"""Main entry point for RAG processing"""
|
| 328 |
random.seed(seed)
|
|
|
|
| 338 |
dedupe_seen = set()
|
| 339 |
|
| 340 |
key = dataset_key.lower()
|
| 341 |
+
# Create opts with Vietnamese translation flag
|
| 342 |
+
opts = {"vietnamese_translation": translator is not None}
|
| 343 |
+
|
| 344 |
if key in ("healthcaremagic", "icliniq"):
|
| 345 |
count = rag_processor.process_medical_dialog(
|
| 346 |
source=key, path=input_path, writer=writer,
|
| 347 |
sample_limit=sample_limit, stats=stats,
|
| 348 |
+
progress_cb=progress_cb, dedupe_seen=dedupe_seen, translator=translator, opts=opts
|
| 349 |
)
|
| 350 |
elif key in ("pubmedqa_l", "pubmedqa_u", "pubmedqa_map"):
|
| 351 |
count = rag_processor.process_pubmedqa(
|
| 352 |
source=key, path=input_path, writer=writer,
|
| 353 |
sample_limit=sample_limit, stats=stats,
|
| 354 |
+
progress_cb=progress_cb, dedupe_seen=dedupe_seen, translator=translator, opts=opts
|
| 355 |
)
|
| 356 |
else:
|
| 357 |
raise ValueError(f"Unknown dataset for RAG processing: {dataset_key}")
|
vi/README.md
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Vietnamese Translation Module
|
| 2 |
+
|
| 3 |
+
This module provides Vietnamese translation functionality for the MedAI Processing application using the Helsinki-NLP/opus-mt-en-vi model.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- **English to Vietnamese Translation**: Translates English text to Vietnamese using the Helsinki-NLP/opus-mt-en-vi model
|
| 8 |
+
- **Batch Processing**: Efficiently translates multiple texts at once
|
| 9 |
+
- **Dictionary Translation**: Translates specific fields in data dictionaries
|
| 10 |
+
- **Integration**: Seamlessly integrates with both SFT and RAG processing workflows
|
| 11 |
+
- **Error Handling**: Graceful fallback to original text if translation fails
|
| 12 |
+
- **Logging**: Comprehensive logging for debugging and monitoring
|
| 13 |
+
|
| 14 |
+
## Configuration
|
| 15 |
+
|
| 16 |
+
Add the following environment variable to your `.env` file:
|
| 17 |
+
|
| 18 |
+
```bash
|
| 19 |
+
EN_VI=Helsinki-NLP/opus-mt-en-vi
|
| 20 |
+
```
|
| 21 |
+
|
| 22 |
+
## Usage
|
| 23 |
+
|
| 24 |
+
### Basic Translation
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
from vi.translator import VietnameseTranslator
|
| 28 |
+
|
| 29 |
+
# Initialize translator
|
| 30 |
+
translator = VietnameseTranslator()
|
| 31 |
+
|
| 32 |
+
# Load the model
|
| 33 |
+
translator.load_model()
|
| 34 |
+
|
| 35 |
+
# Translate single text
|
| 36 |
+
translated = translator.translate_text("Hello, how are you?")
|
| 37 |
+
|
| 38 |
+
# Translate batch of texts
|
| 39 |
+
texts = ["Text 1", "Text 2", "Text 3"]
|
| 40 |
+
translated_batch = translator.translate_batch(texts)
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
### Dictionary Translation
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
# Translate specific fields in a dictionary
|
| 47 |
+
data = {
|
| 48 |
+
"instruction": "Answer the question",
|
| 49 |
+
"input": "What is diabetes?",
|
| 50 |
+
"output": "Diabetes is a metabolic disorder..."
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
translated_data = translator.translate_dict(data, ["instruction", "input", "output"])
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
## Integration
|
| 57 |
+
|
| 58 |
+
The translation functionality is automatically integrated into the processing workflows:
|
| 59 |
+
|
| 60 |
+
1. **UI Toggle**: Users can enable Vietnamese translation via the checkbox in the web interface
|
| 61 |
+
2. **SFT Processing**: All text fields in SFT format are translated when enabled
|
| 62 |
+
3. **RAG Processing**: All text fields in RAG format are translated when enabled
|
| 63 |
+
4. **Metadata**: Translated rows are marked with `vietnamese_translated: true` in metadata
|
| 64 |
+
|
| 65 |
+
## Model Information
|
| 66 |
+
|
| 67 |
+
- **Model**: Helsinki-NLP/opus-mt-en-vi
|
| 68 |
+
- **Source Language**: English
|
| 69 |
+
- **Target Language**: Vietnamese
|
| 70 |
+
- **BLEU Score**: 37.2
|
| 71 |
+
- **chrF Score**: 0.542
|
| 72 |
+
- **License**: Apache 2.0
|
| 73 |
+
|
| 74 |
+
## Testing
|
| 75 |
+
|
| 76 |
+
Run the test script to verify translation functionality:
|
| 77 |
+
|
| 78 |
+
```bash
|
| 79 |
+
python test_translation.py
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
## Files
|
| 83 |
+
|
| 84 |
+
- `translator.py`: Main translation class
|
| 85 |
+
- `download.py`: Model download script for Docker
|
| 86 |
+
- `processing_utils.py`: Utility functions for processing integration
|
| 87 |
+
- `__init__.py`: Module initialization
|
| 88 |
+
- `README.md`: This documentation
|
| 89 |
+
|
| 90 |
+
## Notes
|
| 91 |
+
|
| 92 |
+
- The model is automatically downloaded during Docker build
|
| 93 |
+
- Translation is performed on the CPU by default, but can use GPU if available
|
| 94 |
+
- The model requires the target language token `>>vie<<` for proper translation
|
| 95 |
+
- All translation operations include comprehensive error handling and logging
|
vi/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Vietnamese Translation Module
|
| 3 |
+
|
| 4 |
+
This module provides utilities for translating English text to Vietnamese
|
| 5 |
+
using the Helsinki-NLP/opus-mt-en-vi model from Hugging Face.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from .translator import VietnameseTranslator
|
| 9 |
+
|
| 10 |
+
__all__ = ['VietnameseTranslator']
|
vi/download.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model Download Script for Vietnamese Translation
|
| 3 |
+
|
| 4 |
+
This script downloads the Helsinki-NLP/opus-mt-en-vi model
|
| 5 |
+
and saves it to the Hugging Face cache directory.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
import logging
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from transformers import MarianMTModel, MarianTokenizer
|
| 13 |
+
|
| 14 |
+
# Setup logging
|
| 15 |
+
logging.basicConfig(
|
| 16 |
+
level=logging.INFO,
|
| 17 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 18 |
+
)
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
def download_model(model_name: str = "Helsinki-NLP/opus-mt-en-vi", cache_dir: str = None):
|
| 22 |
+
"""
|
| 23 |
+
Download the translation model and tokenizer.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
model_name: Hugging Face model name
|
| 27 |
+
cache_dir: Cache directory for the model. If None, uses HF_HOME env var
|
| 28 |
+
"""
|
| 29 |
+
if cache_dir is None:
|
| 30 |
+
cache_dir = os.getenv("HF_HOME", os.path.expanduser("~/.cache/huggingface"))
|
| 31 |
+
|
| 32 |
+
logger.info(f"Downloading model: {model_name}")
|
| 33 |
+
logger.info(f"Cache directory: {cache_dir}")
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
# Ensure cache directory exists
|
| 37 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 38 |
+
|
| 39 |
+
# Download tokenizer
|
| 40 |
+
logger.info("Downloading tokenizer...")
|
| 41 |
+
tokenizer = MarianTokenizer.from_pretrained(
|
| 42 |
+
model_name,
|
| 43 |
+
cache_dir=cache_dir
|
| 44 |
+
)
|
| 45 |
+
logger.info("✅ Tokenizer downloaded successfully")
|
| 46 |
+
|
| 47 |
+
# Download model
|
| 48 |
+
logger.info("Downloading model...")
|
| 49 |
+
model = MarianMTModel.from_pretrained(
|
| 50 |
+
model_name,
|
| 51 |
+
cache_dir=cache_dir
|
| 52 |
+
)
|
| 53 |
+
logger.info("✅ Model downloaded successfully")
|
| 54 |
+
|
| 55 |
+
# Test the model
|
| 56 |
+
logger.info("Testing model...")
|
| 57 |
+
test_text = "Hello, how are you?"
|
| 58 |
+
inputs = tokenizer(f">>vie<< {test_text}", return_tensors="pt")
|
| 59 |
+
with model.eval():
|
| 60 |
+
outputs = model.generate(**inputs, max_length=50, num_beams=4)
|
| 61 |
+
translated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 62 |
+
logger.info(f"Test translation: '{test_text}' -> '{translated}'")
|
| 63 |
+
|
| 64 |
+
logger.info("🎉 Model download and test completed successfully!")
|
| 65 |
+
return True
|
| 66 |
+
|
| 67 |
+
except Exception as e:
|
| 68 |
+
logger.error(f"❌ Failed to download model: {e}")
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
def main():
|
| 72 |
+
"""Main function to download the model."""
|
| 73 |
+
# Get model name from environment variable or use default
|
| 74 |
+
model_name = os.getenv("EN_VI", "Helsinki-NLP/opus-mt-en-vi")
|
| 75 |
+
|
| 76 |
+
logger.info("Starting model download process...")
|
| 77 |
+
logger.info(f"Model: {model_name}")
|
| 78 |
+
|
| 79 |
+
success = download_model(model_name)
|
| 80 |
+
|
| 81 |
+
if success:
|
| 82 |
+
logger.info("Model download completed successfully!")
|
| 83 |
+
sys.exit(0)
|
| 84 |
+
else:
|
| 85 |
+
logger.error("Model download failed!")
|
| 86 |
+
sys.exit(1)
|
| 87 |
+
|
| 88 |
+
if __name__ == "__main__":
|
| 89 |
+
main()
|
vi/processing.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Processing utilities for Vietnamese translation integration
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import logging
|
| 6 |
+
from typing import Dict, Any, List, Optional, Callable
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
def translate_sft_row(row: Dict[str, Any], translator, text_fields: List[str] = None) -> Dict[str, Any]:
|
| 11 |
+
"""
|
| 12 |
+
Translate specific text fields in an SFT row from English to Vietnamese.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
row: SFT row dictionary
|
| 16 |
+
translator: VietnameseTranslator instance
|
| 17 |
+
text_fields: List of field names to translate. If None, uses default fields.
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
Translated SFT row dictionary
|
| 21 |
+
"""
|
| 22 |
+
if not translator or not translator.is_loaded():
|
| 23 |
+
logger.warning("Translator not available, skipping translation")
|
| 24 |
+
return row
|
| 25 |
+
|
| 26 |
+
if text_fields is None:
|
| 27 |
+
# Default fields to translate in SFT format
|
| 28 |
+
text_fields = ["instruction", "input", "output"]
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
translated_row = translator.translate_dict(row, text_fields)
|
| 32 |
+
logger.debug(f"Translated SFT row with fields: {text_fields}")
|
| 33 |
+
return translated_row
|
| 34 |
+
except Exception as e:
|
| 35 |
+
logger.error(f"Failed to translate SFT row: {e}")
|
| 36 |
+
return row
|
| 37 |
+
|
| 38 |
+
def translate_rag_row(row: Dict[str, Any], translator, text_fields: List[str] = None) -> Dict[str, Any]:
|
| 39 |
+
"""
|
| 40 |
+
Translate specific text fields in a RAG row from English to Vietnamese.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
row: RAG row dictionary
|
| 44 |
+
translator: VietnameseTranslator instance
|
| 45 |
+
text_fields: List of field names to translate. If None, uses default fields.
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
Translated RAG row dictionary
|
| 49 |
+
"""
|
| 50 |
+
if not translator or not translator.is_loaded():
|
| 51 |
+
logger.warning("Translator not available, skipping translation")
|
| 52 |
+
return row
|
| 53 |
+
|
| 54 |
+
if text_fields is None:
|
| 55 |
+
# Default fields to translate in RAG format
|
| 56 |
+
text_fields = ["instruction", "input", "output"]
|
| 57 |
+
|
| 58 |
+
try:
|
| 59 |
+
translated_row = translator.translate_dict(row, text_fields)
|
| 60 |
+
logger.debug(f"Translated RAG row with fields: {text_fields}")
|
| 61 |
+
return translated_row
|
| 62 |
+
except Exception as e:
|
| 63 |
+
logger.error(f"Failed to translate RAG row: {e}")
|
| 64 |
+
return row
|
| 65 |
+
|
| 66 |
+
def should_translate(vietnamese_translation: bool, translator) -> bool:
|
| 67 |
+
"""
|
| 68 |
+
Check if translation should be performed.
|
| 69 |
+
|
| 70 |
+
Args:
|
| 71 |
+
vietnamese_translation: Flag from user input
|
| 72 |
+
translator: VietnameseTranslator instance
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
True if translation should be performed
|
| 76 |
+
"""
|
| 77 |
+
if not vietnamese_translation:
|
| 78 |
+
return False
|
| 79 |
+
|
| 80 |
+
if not translator or not translator.is_loaded():
|
| 81 |
+
logger.warning("Vietnamese translation requested but translator not available")
|
| 82 |
+
return False
|
| 83 |
+
|
| 84 |
+
return True
|
| 85 |
+
|
| 86 |
+
def log_translation_stats(stats: Dict[str, Any], translated_count: int) -> None:
|
| 87 |
+
"""
|
| 88 |
+
Log translation statistics.
|
| 89 |
+
|
| 90 |
+
Args:
|
| 91 |
+
stats: Statistics dictionary to update
|
| 92 |
+
translated_count: Number of items translated
|
| 93 |
+
"""
|
| 94 |
+
stats["vietnamese_translated"] = translated_count
|
| 95 |
+
logger.info(f"Vietnamese translation completed: {translated_count} items translated")
|
vi/translator.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Vietnamese Translator using Helsinki-NLP/opus-mt-en-vi model
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import logging
|
| 7 |
+
from typing import List, Dict, Any, Optional, Union
|
| 8 |
+
from transformers import MarianMTModel, MarianTokenizer
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
class VietnameseTranslator:
|
| 14 |
+
"""
|
| 15 |
+
Vietnamese translator using Helsinki-NLP/opus-mt-en-vi model.
|
| 16 |
+
|
| 17 |
+
This class handles translation from English to Vietnamese using the
|
| 18 |
+
MarianMT model from Hugging Face Transformers.
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def __init__(self, model_name: Optional[str] = None, device: Optional[str] = None):
|
| 22 |
+
"""
|
| 23 |
+
Initialize the Vietnamese translator.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
model_name: Hugging Face model name. Defaults to EN_VI env var or Helsinki-NLP/opus-mt-en-vi
|
| 27 |
+
device: Device to run the model on ('cpu', 'cuda', 'auto'). Defaults to 'auto'
|
| 28 |
+
"""
|
| 29 |
+
self.model_name = model_name or os.getenv("EN_VI", "Helsinki-NLP/opus-mt-en-vi")
|
| 30 |
+
self.device = self._get_device(device)
|
| 31 |
+
self.model = None
|
| 32 |
+
self.tokenizer = None
|
| 33 |
+
self._is_loaded = False
|
| 34 |
+
|
| 35 |
+
logger.info(f"VietnameseTranslator initialized with model: {self.model_name}")
|
| 36 |
+
logger.info(f"Using device: {self.device}")
|
| 37 |
+
|
| 38 |
+
def _get_device(self, device: Optional[str]) -> str:
|
| 39 |
+
"""Determine the best device to use for the model."""
|
| 40 |
+
if device:
|
| 41 |
+
return device
|
| 42 |
+
|
| 43 |
+
if torch.cuda.is_available():
|
| 44 |
+
return "cuda"
|
| 45 |
+
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
| 46 |
+
return "mps"
|
| 47 |
+
else:
|
| 48 |
+
return "cpu"
|
| 49 |
+
|
| 50 |
+
def load_model(self) -> None:
|
| 51 |
+
"""Load the translation model and tokenizer."""
|
| 52 |
+
if self._is_loaded:
|
| 53 |
+
logger.debug("Model already loaded, skipping...")
|
| 54 |
+
return
|
| 55 |
+
|
| 56 |
+
try:
|
| 57 |
+
logger.info(f"Loading translation model: {self.model_name}")
|
| 58 |
+
logger.info(f"Loading on device: {self.device}")
|
| 59 |
+
|
| 60 |
+
# Load tokenizer
|
| 61 |
+
self.tokenizer = MarianTokenizer.from_pretrained(
|
| 62 |
+
self.model_name,
|
| 63 |
+
cache_dir=os.getenv("HF_HOME", os.path.expanduser("~/.cache/huggingface"))
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Load model
|
| 67 |
+
self.model = MarianMTModel.from_pretrained(
|
| 68 |
+
self.model_name,
|
| 69 |
+
cache_dir=os.getenv("HF_HOME", os.path.expanduser("~/.cache/huggingface"))
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Move model to device
|
| 73 |
+
self.model = self.model.to(self.device)
|
| 74 |
+
self.model.eval()
|
| 75 |
+
|
| 76 |
+
self._is_loaded = True
|
| 77 |
+
logger.info("✅ Translation model loaded successfully")
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logger.error(f"❌ Failed to load translation model: {e}")
|
| 81 |
+
raise RuntimeError(f"Failed to load translation model: {e}")
|
| 82 |
+
|
| 83 |
+
def translate_text(self, text: str) -> str:
|
| 84 |
+
"""
|
| 85 |
+
Translate a single text from English to Vietnamese.
|
| 86 |
+
|
| 87 |
+
Args:
|
| 88 |
+
text: English text to translate
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
Translated Vietnamese text
|
| 92 |
+
"""
|
| 93 |
+
if not self._is_loaded:
|
| 94 |
+
self.load_model()
|
| 95 |
+
|
| 96 |
+
if not text or not text.strip():
|
| 97 |
+
return text
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
# Prepare input with target language token
|
| 101 |
+
# The model requires a target language token in the format >>id<<
|
| 102 |
+
input_text = f">>vie<< {text.strip()}"
|
| 103 |
+
|
| 104 |
+
# Tokenize
|
| 105 |
+
inputs = self.tokenizer(
|
| 106 |
+
input_text,
|
| 107 |
+
return_tensors="pt",
|
| 108 |
+
padding=True,
|
| 109 |
+
truncation=True,
|
| 110 |
+
max_length=512
|
| 111 |
+
).to(self.device)
|
| 112 |
+
|
| 113 |
+
# Translate
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
outputs = self.model.generate(
|
| 116 |
+
**inputs,
|
| 117 |
+
max_length=512,
|
| 118 |
+
num_beams=4,
|
| 119 |
+
early_stopping=True,
|
| 120 |
+
do_sample=False
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Decode
|
| 124 |
+
translated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 125 |
+
|
| 126 |
+
logger.debug(f"Translated: '{text[:50]}...' -> '{translated[:50]}...'")
|
| 127 |
+
return translated.strip()
|
| 128 |
+
|
| 129 |
+
except Exception as e:
|
| 130 |
+
logger.error(f"Translation failed for text: '{text[:100]}...' - Error: {e}")
|
| 131 |
+
# Return original text if translation fails
|
| 132 |
+
return text
|
| 133 |
+
|
| 134 |
+
def translate_batch(self, texts: List[str], batch_size: int = 8) -> List[str]:
|
| 135 |
+
"""
|
| 136 |
+
Translate a batch of texts from English to Vietnamese.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
texts: List of English texts to translate
|
| 140 |
+
batch_size: Number of texts to process in each batch
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
List of translated Vietnamese texts
|
| 144 |
+
"""
|
| 145 |
+
if not self._is_loaded:
|
| 146 |
+
self.load_model()
|
| 147 |
+
|
| 148 |
+
if not texts:
|
| 149 |
+
return []
|
| 150 |
+
|
| 151 |
+
results = []
|
| 152 |
+
|
| 153 |
+
try:
|
| 154 |
+
for i in range(0, len(texts), batch_size):
|
| 155 |
+
batch = texts[i:i + batch_size]
|
| 156 |
+
logger.debug(f"Processing batch {i//batch_size + 1}/{(len(texts) + batch_size - 1)//batch_size}")
|
| 157 |
+
|
| 158 |
+
# Prepare batch with target language tokens
|
| 159 |
+
batch_inputs = [f">>vie<< {text.strip()}" for text in batch]
|
| 160 |
+
|
| 161 |
+
# Tokenize batch
|
| 162 |
+
inputs = self.tokenizer(
|
| 163 |
+
batch_inputs,
|
| 164 |
+
return_tensors="pt",
|
| 165 |
+
padding=True,
|
| 166 |
+
truncation=True,
|
| 167 |
+
max_length=512
|
| 168 |
+
).to(self.device)
|
| 169 |
+
|
| 170 |
+
# Translate batch
|
| 171 |
+
with torch.no_grad():
|
| 172 |
+
outputs = self.model.generate(
|
| 173 |
+
**inputs,
|
| 174 |
+
max_length=512,
|
| 175 |
+
num_beams=4,
|
| 176 |
+
early_stopping=True,
|
| 177 |
+
do_sample=False
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# Decode batch
|
| 181 |
+
batch_translations = [
|
| 182 |
+
self.tokenizer.decode(output, skip_special_tokens=True).strip()
|
| 183 |
+
for output in outputs
|
| 184 |
+
]
|
| 185 |
+
|
| 186 |
+
results.extend(batch_translations)
|
| 187 |
+
|
| 188 |
+
except Exception as e:
|
| 189 |
+
logger.error(f"Batch translation failed: {e}")
|
| 190 |
+
# Return original texts if translation fails
|
| 191 |
+
results = texts
|
| 192 |
+
|
| 193 |
+
logger.info(f"Translated {len(texts)} texts successfully")
|
| 194 |
+
return results
|
| 195 |
+
|
| 196 |
+
def translate_dict(self, data: Dict[str, Any], text_fields: List[str]) -> Dict[str, Any]:
|
| 197 |
+
"""
|
| 198 |
+
Translate specific text fields in a dictionary from English to Vietnamese.
|
| 199 |
+
|
| 200 |
+
Args:
|
| 201 |
+
data: Dictionary containing the data
|
| 202 |
+
text_fields: List of field names to translate
|
| 203 |
+
|
| 204 |
+
Returns:
|
| 205 |
+
Dictionary with translated text fields
|
| 206 |
+
"""
|
| 207 |
+
if not self._is_loaded:
|
| 208 |
+
self.load_model()
|
| 209 |
+
|
| 210 |
+
result = data.copy()
|
| 211 |
+
|
| 212 |
+
for field in text_fields:
|
| 213 |
+
if field in data and isinstance(data[field], str) and data[field].strip():
|
| 214 |
+
try:
|
| 215 |
+
result[field] = self.translate_text(data[field])
|
| 216 |
+
logger.debug(f"Translated field '{field}': '{data[field][:50]}...' -> '{result[field][:50]}...'")
|
| 217 |
+
except Exception as e:
|
| 218 |
+
logger.error(f"Failed to translate field '{field}': {e}")
|
| 219 |
+
# Keep original text if translation fails
|
| 220 |
+
result[field] = data[field]
|
| 221 |
+
|
| 222 |
+
return result
|
| 223 |
+
|
| 224 |
+
def translate_list_of_dicts(self, data_list: List[Dict[str, Any]], text_fields: List[str]) -> List[Dict[str, Any]]:
|
| 225 |
+
"""
|
| 226 |
+
Translate specific text fields in a list of dictionaries.
|
| 227 |
+
|
| 228 |
+
Args:
|
| 229 |
+
data_list: List of dictionaries containing the data
|
| 230 |
+
text_fields: List of field names to translate in each dictionary
|
| 231 |
+
|
| 232 |
+
Returns:
|
| 233 |
+
List of dictionaries with translated text fields
|
| 234 |
+
"""
|
| 235 |
+
if not data_list:
|
| 236 |
+
return []
|
| 237 |
+
|
| 238 |
+
logger.info(f"Translating {len(data_list)} items with fields: {text_fields}")
|
| 239 |
+
|
| 240 |
+
results = []
|
| 241 |
+
for i, data in enumerate(data_list):
|
| 242 |
+
try:
|
| 243 |
+
translated_data = self.translate_dict(data, text_fields)
|
| 244 |
+
results.append(translated_data)
|
| 245 |
+
|
| 246 |
+
if (i + 1) % 100 == 0:
|
| 247 |
+
logger.info(f"Translated {i + 1}/{len(data_list)} items")
|
| 248 |
+
|
| 249 |
+
except Exception as e:
|
| 250 |
+
logger.error(f"Failed to translate item {i}: {e}")
|
| 251 |
+
results.append(data) # Keep original data if translation fails
|
| 252 |
+
|
| 253 |
+
logger.info(f"Completed translation of {len(data_list)} items")
|
| 254 |
+
return results
|
| 255 |
+
|
| 256 |
+
def is_loaded(self) -> bool:
|
| 257 |
+
"""Check if the model is loaded."""
|
| 258 |
+
return self._is_loaded
|
| 259 |
+
|
| 260 |
+
def get_model_info(self) -> Dict[str, str]:
|
| 261 |
+
"""Get information about the loaded model."""
|
| 262 |
+
return {
|
| 263 |
+
"model_name": self.model_name,
|
| 264 |
+
"device": self.device,
|
| 265 |
+
"is_loaded": self._is_loaded
|
| 266 |
+
}
|