# RAG-specific dataset processor import json import logging import hashlib import random from typing import Dict, List, Tuple, Optional, Callable from utils.schema import sft_row, rag_row from utils.cloud_llm import NvidiaClient, KeyRotator from utils.local_llm import MedAlpacaClient from vi.processing import should_translate, translate_rag_row from utils import augment as A # Logger logger = logging.getLogger("rag_processor") if not logger.handlers: logger.setLevel(logging.INFO) logger.addHandler(logging.StreamHandler()) def _hash_id(*parts) -> str: """Generate a hash ID for RAG entries""" h = hashlib.sha256() for p in parts: h.update(str(p).encode("utf-8")) return h.hexdigest()[:16] def _iter_json_or_jsonl(path: str): """Iterate over JSON or JSONL files""" with open(path, "r", encoding="utf-8") as f: first = f.read(1) f.seek(0) if first == "[": data = json.load(f) for obj in data: yield obj else: for line in f: line = line.strip() if line: yield json.loads(line) class RAGProcessor: """Processes medical datasets into RAG-specific QCA (Question, Context, Answer) format""" def __init__(self, nvidia_model: str, is_local: bool = False, hf_token: str = None): self.is_local = is_local if is_local: self.medalpaca_client = MedAlpacaClient(hf_token=hf_token) self.nvidia_client = None else: self.nvidia_client = NvidiaClient(KeyRotator("NVIDIA_API"), nvidia_model) self.medalpaca_client = None def clean_conversational_content(self, text: str) -> str: """Remove conversational elements and non-medical information using MedAlpaca or NVIDIA model; keep concise for embeddings.""" if not text or len(text.strip()) < 10: return text prompt = f"""Clean the following text by removing conversational elements (greetings, pleasantries), non-medical small talk, and social interactions. Keep only medically relevant information while preserving clinical facts, symptoms, diagnoses, treatments, and medical advice. Maintain professional medical language. Return only cleaned medical content in 1-2 concise sentences suitable for dense retrieval embeddings. No lists, no headers, no introduction or commentary: {text}""" try: if self.is_local and self.medalpaca_client: cleaned = self.medalpaca_client.generate( prompt, temperature=0.1, max_tokens=min(1000, len(text) + 200) ) else: cleaned = self.nvidia_client.generate( prompt, temperature=0.1, max_tokens=min(1000, len(text) + 200) ) return cleaned.strip() if cleaned else text except Exception as e: logger.warning(f"[RAG] Error cleaning text: {e}") return text def generate_context_from_qa(self, question: str, answer: str) -> str: """Generate synthetic, concise context (<=2 sentences) from question and answer, embedding-friendly.""" if not question or not answer: return "" prompt = f"""Given a medical question and its answer, generate a brief relevant medical context that helps retrieval. Limit to 1–2 sentences, concise, avoid boilerplate, no enumerations. Return only the medical context without any introduction or commentary: Question: {question} Answer: {answer}""" try: if self.is_local and self.medalpaca_client: context = self.medalpaca_client.generate( prompt, temperature=0.2, max_tokens=200 ) else: context = self.nvidia_client.generate( prompt, temperature=0.2, max_tokens=200 ) # Trim to a single short paragraph return (context or "").strip().split("\n")[0][:600] except Exception as e: logger.warning(f"[RAG] Error generating context: {e}") return "" def convert_to_qca_format(self, instruction: str, user_input: str, output: str) -> Tuple[str, str, str]: """Convert SFT format to QCA (Question, Context, Answer) format, compressing for embedding suitability.""" # Clean the content to remove conversational elements cleaned_input = self.clean_conversational_content(user_input) cleaned_output = self.clean_conversational_content(output) # Hard caps for embedding friendliness cleaned_input = (cleaned_input or "")[:1200] cleaned_output = (cleaned_output or "")[:1200] # Extract question from user input question = self.extract_question(cleaned_input) # Extract or generate context context = self.extract_context(cleaned_input, question, cleaned_output) # Clean answer # Prefer short, direct answers answer = cleaned_output[:800] return question, context, answer def extract_question(self, user_input: str) -> str: """Extract the main question from user input""" if not user_input: return "" # Try to identify question patterns lines = user_input.split('\n') for line in lines: line = line.strip() if line.startswith('Question:') or line.startswith('Q:'): return line.replace('Question:', '').replace('Q:', '').strip() elif '?' in line and len(line) > 10: return line # If no clear question found, use the first meaningful line for line in lines: line = line.strip() if len(line) > 10: return line return user_input def extract_context(self, user_input: str, question: str, answer: str) -> str: """Extract context from user input or generate synthetic context""" # Look for context in the original input context_candidates = [] lines = user_input.split('\n') for line in lines: line = line.strip() if (line.startswith('Context:') or line.startswith('Background:') or line.startswith('Information:') or (len(line) > 50 and not line.startswith('Question:') and '?' not in line)): context_candidates.append(line) if context_candidates: # Clean and combine context candidates context = ' '.join(context_candidates) context = self.clean_conversational_content(context) if len(context) > 20: # Ensure we have meaningful context return context # Generate synthetic context if none found if question and answer: synthetic_context = self.generate_context_from_qa(question, answer) if synthetic_context: return synthetic_context return "" def process_medical_dialog(self, source: str, path: str, writer, sample_limit: Optional[int], stats: Dict, progress_cb: Optional[Callable], dedupe_seen: set = None, translator=None, opts=None) -> int: """Process medical dialogue datasets into RAG format""" count = 0 written = 0 for i, obj in enumerate(_iter_json_or_jsonl(path), start=1): try: instr_raw = obj.get("instruction") or "Answer the medical question based on the provided context." user_raw = obj.get("input") or "" out_raw = obj.get("output") or "" instr = str(instr_raw).strip() user = str(user_raw).strip() out = str(out_raw).strip() rid = _hash_id(source, i, len(user), len(out)) # Convert to QCA format question, context, answer = self.convert_to_qca_format(instr, user, out) # Clean invalid responses with retry logic if A.is_invalid_response(answer): if paraphraser: answer = A.retry_invalid_response(answer, paraphraser, max_retries=3) else: answer = A.clean_invalid_response(answer, "") if not answer: # If retry failed, skip this sample continue if not question or not answer: continue # Commit the RAG-formatted row (QAC) if self._commit_rag_row(writer, rid, question, context, answer, stats, dedupe_seen=dedupe_seen, translator=translator, opts=opts): written += 1 count += 1 except Exception as e: logger.warning(f"[RAG] {source} error processing item {i}: {e}") continue if sample_limit and count >= sample_limit: break if progress_cb and i % 1000 == 0: progress_cb(min(0.9, 0.05 + i/200000), f"{source}: processed {i} rows for RAG") if progress_cb: progress_cb(0.92, f"{source} RAG processing done ({count})") logger.info(f"[RAG] {source} RAG processing done count={count} written={written}") return count def process_pubmedqa(self, source: str, path: str, writer, sample_limit: Optional[int], stats: Dict, progress_cb: Optional[Callable], dedupe_seen: set = None, translator=None, opts=None) -> int: """Process PubMedQA datasets into RAG format""" with open(path, "r", encoding="utf-8") as f: data = json.load(f) count = 0 written = 0 for k, v in data.items(): try: q_raw = v.get("QUESTION") or "" ctx_list = v.get("CONTEXTS") or [] long_ans_raw = v.get("LONG_ANSWER") or "" final_raw = v.get("final_decision") or "" question = str(q_raw).strip() if q_raw else "" if isinstance(ctx_list, list): context = "\n".join(str(ctx) for ctx in ctx_list).strip() else: context = str(ctx_list).strip() answer = str(long_ans_raw).strip() if long_ans_raw else str(final_raw).strip() if not question or not answer: continue # Clean the content question = self.clean_conversational_content(question) context = self.clean_conversational_content(context) answer = self.clean_conversational_content(answer) # Clean invalid responses with retry logic if A.is_invalid_response(answer): if paraphraser: answer = A.retry_invalid_response(answer, paraphraser, max_retries=3) else: answer = A.clean_invalid_response(answer, "") if not answer: # If retry failed, skip this sample continue # Generate context if missing if not context: context = self.generate_context_from_qa(question, answer) rid = str(k) # Commit the RAG-formatted row (QAC) if self._commit_rag_row(writer, rid, question, context, answer, stats, dedupe_seen=dedupe_seen, translator=translator, opts=opts): written += 1 count += 1 except Exception as e: logger.warning(f"[RAG] {source} error processing item {k}: {e}") continue if sample_limit and count >= sample_limit: break if progress_cb and count % 1000 == 0: progress_cb(min(0.9, 0.05 + count/60000), f"{source} RAG processed {count}") if progress_cb: progress_cb(0.93, f"{source} RAG processing done ({count})") logger.info(f"[RAG] {source} RAG processing done count={count} written={written}") return count def _commit_rag_row(self, writer, rid: str, question: str, context: str, answer: str, stats: Dict, dedupe_seen: set = None, translator=None, opts=None) -> bool: """Commit a RAG-formatted row (QAC) to the writer""" # Simple deduplication based on content hash if dedupe_seen is not None: content_hash = hashlib.md5(f"{question}{context}{answer}".encode()).hexdigest() if content_hash in dedupe_seen: stats["dedup_skipped"] = stats.get("dedup_skipped", 0) + 1 return False dedupe_seen.add(content_hash) row = rag_row(question=question, context=context, answer=answer, rid=rid) # Apply Vietnamese translation if requested (translate Q/A/C fields directly) if should_translate(opts.get("vietnamese_translation", False) if opts else False, translator): try: row = translate_rag_row(row, translator, ["question", "answer", "context"]) # Add translation metadata if "meta" not in row: row["meta"] = {} row["meta"]["vietnamese_translated"] = True except Exception as e: logger.error(f"Failed to translate RAG row: {e}") # Continue with original row if translation fails writer.write(row) stats["written"] = stats.get("written", 0) + 1 return True def process_file_into_rag( dataset_key: str, input_path: str, writer, nvidia_model: str, sample_limit: Optional[int], seed: int, progress_cb: Optional[Callable[[float, str], None]], translator=None, paraphraser=None, is_local: bool = False, hf_token: str = None ) -> Tuple[int, Dict]: """Main entry point for RAG processing""" random.seed(seed) stats = { "written": 0, "dedup_skipped": 0 } logger.info(f"[RAG] Begin RAG processing dataset={dataset_key} sample_limit={sample_limit}") # Initialize RAG processor rag_processor = RAGProcessor(nvidia_model, is_local=is_local, hf_token=hf_token) dedupe_seen = set() key = dataset_key.lower() # Create opts with Vietnamese translation flag opts = {"vietnamese_translation": translator is not None} if key in ("healthcaremagic", "icliniq"): count = rag_processor.process_medical_dialog( source=key, path=input_path, writer=writer, sample_limit=sample_limit, stats=stats, progress_cb=progress_cb, dedupe_seen=dedupe_seen, translator=translator, opts=opts ) elif key in ("pubmedqa_l", "pubmedqa_u", "pubmedqa_map"): count = rag_processor.process_pubmedqa( source=key, path=input_path, writer=writer, sample_limit=sample_limit, stats=stats, progress_cb=progress_cb, dedupe_seen=dedupe_seen, translator=translator, opts=opts ) else: raise ValueError(f"Unknown dataset for RAG processing: {dataset_key}") logger.info(f"[RAG] End RAG processing dataset={dataset_key} stats={stats}") return count, stats