File size: 9,174 Bytes
16f3ba1
 
 
c7f8c69
ba1196d
16f3ba1
3cce116
67ec8f1
 
3cce116
67ec8f1
 
 
 
ba1196d
3cce116
16f3ba1
 
 
 
3cce116
 
16f3ba1
3cce116
81d8cd8
3cce116
81d8cd8
3cce116
 
 
16f3ba1
 
 
 
3cce116
 
 
 
16f3ba1
3cce116
 
 
 
81d8cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f3ba1
 
 
 
 
 
 
 
 
 
 
 
81d8cd8
 
ba1196d
81d8cd8
 
ba1196d
3cce116
81d8cd8
ba1196d
 
16f3ba1
ba1196d
16f3ba1
ba1196d
 
 
81d8cd8
16f3ba1
3cce116
ba1196d
3cce116
 
ba1196d
67ec8f1
81d8cd8
ba1196d
67ec8f1
 
c7f8c69
ba1196d
c7f8c69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba1196d
 
 
 
 
 
 
 
16f3ba1
ba1196d
 
 
67ec8f1
ba1196d
 
67ec8f1
ba1196d
 
81d8cd8
3cce116
81d8cd8
3cce116
ba1196d
81d8cd8
67ec8f1
3cce116
 
81d8cd8
67ec8f1
ba1196d
 
 
67ec8f1
ba1196d
 
 
 
 
3cce116
ba1196d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67ec8f1
ba1196d
 
16f3ba1
 
 
ba1196d
 
 
16f3ba1
67ec8f1
3cce116
 
67ec8f1
3cce116
ba1196d
 
3cce116
 
 
 
67ec8f1
3cce116
67ec8f1
3cce116
16f3ba1
 
 
67ec8f1
3cce116
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import time
import json
import logging
import os
from typing import Any, Dict, List, Optional, Tuple, Sequence

import numpy as np
import torch

from backends_base import ChatBackend, ImagesBackend
from config import settings

logger = logging.getLogger(__name__)

# ---------- helpers ----------
def _parse_series(series: Any) -> np.ndarray:
    """
    Accepts: list[float|int], list[dict{'y'|'value'}], or dict with 'values'/'y'.
    Returns: 1D float32 numpy array.
    """
    if series is None:
        raise ValueError("series is required")

    if isinstance(series, dict):
        series = series.get("values") or series.get("y")

    vals: List[float] = []
    if isinstance(series, (list, tuple)):
        if series and isinstance(series[0], dict):
            for item in series:
                if "y" in item:
                    vals.append(float(item["y"]))
                elif "value" in item:
                    vals.append(float(item["value"]))
        else:
            vals = [float(x) for x in series]
    else:
        raise ValueError("series must be a list/tuple or dict with 'values'/'y'")

    if not vals:
        raise ValueError("series is empty")
    return np.asarray(vals, dtype=np.float32)

def _extract_json_from_text(s: str) -> Optional[Dict[str, Any]]:
    s = s.strip()
    if (s.startswith("{") and s.endswith("}")) or (s.startswith("[") and s.endswith("]")):
        try:
            obj = json.loads(s)
            return obj if isinstance(obj, dict) else None
        except Exception:
            pass
    if "```" in s:
        parts = s.split("```")
        for i in range(1, len(parts), 2):
            block = parts[i]
            if block.lstrip().lower().startswith("json"):
                block = block.split("\n", 1)[-1]
            try:
                obj = json.loads(block.strip())
                return obj if isinstance(obj, dict) else None
            except Exception:
                continue
    return None

def _merge_openai_message_json(payload: Dict[str, Any]) -> Dict[str, Any]:
    msgs = payload.get("messages")
    if not isinstance(msgs, list):
        return payload
    for m in reversed(msgs):
        if not isinstance(m, dict) or m.get("role") != "user":
            continue
        content = m.get("content")
        texts: List[str] = []
        if isinstance(content, list):
            texts = [
                p.get("text")
                for p in content
                if isinstance(p, dict) and p.get("type") == "text" and isinstance(p.get("text"), str)
            ]
        elif isinstance(content, str):
            texts = [content]
        for t in reversed(texts):
            obj = _extract_json_from_text(t)
            if isinstance(obj, dict):
                return {**payload, **obj}
        break
    return payload

# ---------- backend ----------
class TimesFMBackend(ChatBackend):
    """
    TimesFM 2.5 backend.
    Input JSON can be in top-level keys, in CloudEvents .data, or embedded in last user message.
    Keys:
      series: list[float|int|{y|value}] OR list of such lists for batch
      horizon: int (>0)
    Optional:
      quantiles: bool (default True) -> include quantile forecasts
      max_context, max_horizon: ints to override defaults
    """

    def __init__(self, model_id: Optional[str] = None, device: Optional[str] = None):
        # HF id for bookkeeping only
        self.model_id = model_id or "google/timesfm-2.5-200m-pytorch"
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self._model = None  # lazy

    def _ensure_model(self) -> None:
        if self._model is not None:
            return
        try:
            import os
            import timesfm  # 2.5 API

            hf_token = getattr(settings, "HF_TOKEN", None) or os.environ.get("HF_TOKEN")
            cache_dir = getattr(settings, "TIMESFM_CACHE_DIR", None)

            model = timesfm.TimesFM_2p5_200M_torch.from_pretrained(
                self.model_id,
                token=hf_token,
                cache_dir=cache_dir,
                local_files_only=False,
            )

            try:
                # .model holds the underlying nn.Module; fall back to instance if absent.
                target = getattr(model, "model", model)
                target.to(self.device)  # type: ignore[arg-type]
            except Exception:
                pass

            cfg = timesfm.ForecastConfig(
                max_context=1024,
                max_horizon=256,
                normalize_inputs=True,
                use_continuous_quantile_head=True,
                force_flip_invariance=True,
                infer_is_positive=True,
                fix_quantile_crossing=True,
            )
            model.compile(cfg)
            self._model = model
            logger.info("TimesFM 2.5 model loaded on %s", self.device)
        except Exception as e:
            logger.exception("TimesFM 2.5 init failed")
            raise RuntimeError(f"timesfm 2.5 init failed: {e}") from e

    def _prepare_inputs(self, payload: Dict[str, Any]) -> Tuple[List[np.ndarray], int, bool, Dict[str, int]]:
        # unwrap CloudEvents and nested keys
        if isinstance(payload.get("data"), dict):
            payload = {**payload, **payload["data"]}
        if isinstance(payload.get("timeseries"), dict):
            payload = {**payload, **payload["timeseries"]}
        # merge JSON in last user message
        payload = _merge_openai_message_json(payload)

        horizon = int(payload.get("horizon", 0))
        if horizon <= 0:
            raise ValueError("horizon must be a positive integer")

        quantiles = bool(payload.get("quantiles", True))
        mc = int(payload.get("max_context", 1024))
        mh = int(payload.get("max_horizon", 256))

        series = payload.get("series")
        inputs: List[np.ndarray]
        if isinstance(series, list) and series and isinstance(series[0], (list, tuple, dict)):
            # batch input
            inputs = [_parse_series(s) for s in series]
        else:
            # single series -> batch of 1
            inputs = [_parse_series(series)]

        return inputs, horizon, quantiles, {"max_context": mc, "max_horizon": mh}

    async def forecast(self, payload: Dict[str, Any]) -> Dict[str, Any]:
        inputs, horizon, want_quantiles, cfg_overrides = self._prepare_inputs(payload)
        self._ensure_model()

        # if user wants larger limits, recompile once
        try:
            import timesfm
            if cfg_overrides["max_context"] != 1024 or cfg_overrides["max_horizon"] != 256:
                cfg = timesfm.ForecastConfig(
                    max_context=cfg_overrides["max_context"],
                    max_horizon=cfg_overrides["max_horizon"],
                    normalize_inputs=True,
                    use_continuous_quantile_head=want_quantiles,
                    force_flip_invariance=True,
                    infer_is_positive=True,
                    fix_quantile_crossing=True,
                )
                self._model.compile(cfg)
        except Exception:
            pass

        try:
            point, quant = self._model.forecast(horizon=horizon, inputs=inputs)
            point_list = [row.astype(float).tolist() for row in point]  # shape (B, H)
            quant_list = None
            if want_quantiles and quant is not None:
                # shape (B, H, 10): mean, q10..q90
                quant_list = [[row[h].astype(float).tolist() for h in range(row.shape[0])] for row in quant]
        except Exception as e:
            logger.exception("TimesFM 2.5 forecast failed")
            raise RuntimeError(f"forecast failed: {e}") from e

        # If single-series input, unwrap batch dim for convenience
        single = len(inputs) == 1
        return {
            "model": self.model_id,
            "horizon": horizon,
            "forecast": point_list[0] if single else point_list,
            "quantiles": (quant_list[0] if single else quant_list) if want_quantiles else None,
            "backend": "timesfm-2.5",
        }

    async def stream(self, request: Dict[str, Any]):
        rid = f"chatcmpl-timesfm-{int(time.time())}"
        now = int(time.time())
        try:
            result = await self.forecast(dict(request) if isinstance(request, dict) else {})
            content = json.dumps(result, separators=(",", ":"), ensure_ascii=False)
        except Exception as e:
            content = json.dumps({"error": str(e)}, separators=(",", ":"), ensure_ascii=False)

        yield {
            "id": rid,
            "object": "chat.completion.chunk",
            "created": now,
            "model": self.model_id,
            "choices": [
                {"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"}
            ],
        }

class StubImagesBackend(ImagesBackend):
    async def generate_b64(self, request: Dict[str, Any]) -> str:
        logger.warning("Image generation not supported in TimesFM backend.")
        return "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="