Spaces:
Sleeping
Sleeping
Revert MCP workarounds.. unfixable: @gradio-app fix MCP schema $ref - $defs nested incorrectly!
Browse files
app.py
CHANGED
|
@@ -1,739 +1,692 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""SD Dataset Automaker - HF Space (CPU) - Anime character dataset generator for LoRA/fine-tuning."""
|
| 3 |
-
|
| 4 |
-
import warnings
|
| 5 |
-
warnings.filterwarnings('ignore', category=FutureWarning) # Suppress torch.cuda.amp spam
|
| 6 |
-
warnings.filterwarnings('ignore', category=UserWarning, message='.*trust_repo.*')
|
| 7 |
-
|
| 8 |
-
import os, re, shutil, zipfile, random, tempfile, argparse, sys
|
| 9 |
-
from urllib.parse import quote_plus
|
| 10 |
-
from collections import Counter
|
| 11 |
-
from pathlib import Path
|
| 12 |
-
|
| 13 |
-
from tqdm import tqdm
|
| 14 |
-
import gradio as gr
|
| 15 |
-
from bs4 import BeautifulSoup
|
| 16 |
-
import requests as req_lib
|
| 17 |
-
import time
|
| 18 |
-
import numpy as np
|
| 19 |
-
from PIL import Image
|
| 20 |
-
import torch
|
| 21 |
-
import torch.nn as nn
|
| 22 |
-
from torchvision import models, transforms
|
| 23 |
-
from sklearn.metrics.pairwise import pairwise_distances
|
| 24 |
-
import onnxruntime as rt
|
| 25 |
-
import pandas as pd
|
| 26 |
-
import huggingface_hub
|
| 27 |
-
|
| 28 |
-
# =============================================================================
|
| 29 |
-
# CONFIG
|
| 30 |
-
# =============================================================================
|
| 31 |
-
EXTS = ('.jpg', '.jpeg', '.png')
|
| 32 |
-
MODEL_DIR = Path(__file__).parent.resolve() # Ensure absolute path
|
| 33 |
-
YOLO_PATH = MODEL_DIR / "yolov5s_anime.pt"
|
| 34 |
-
SIM_PATH = MODEL_DIR / "similarity.pt"
|
| 35 |
-
EXAMPLES = [str(MODEL_DIR / f"from_url_spike_spiegel{i}.jpg") for i in range(1, 4)] # absolute paths for gr.Examples
|
| 36 |
-
WD_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
|
| 37 |
-
TAG_THRESH, BLACKLIST = 0.35, ["bangs", "breasts", "multicolored hair", "gradient hair", "two-tone hair", "virtual youtuber"]
|
| 38 |
-
FACE_CONF, FACE_IOU, MIN_FACE, CROP_PAD = 0.5, 0.5, 35, 0.2
|
| 39 |
-
SIM_THRESH, BATCH_SZ, FACE_SZ = 32, 16, 224
|
| 40 |
-
|
| 41 |
-
# =============================================================================
|
| 42 |
-
# UTILS
|
| 43 |
-
# =============================================================================
|
| 44 |
-
sanitize = lambda s: re.sub(r'[^\w.-]', '', s.replace(" ", "_"))
|
| 45 |
-
get_imgs = lambda d: sorted([os.path.join(r,f) for r,_,fs in os.walk(d) for f in fs if f.lower().endswith(EXTS)])
|
| 46 |
-
valid_img = lambda p: (lambda i: i.load() or True)(Image.open(p)) if os.path.exists(p) else False
|
| 47 |
-
|
| 48 |
-
# HTTP session - mode depends on environment
|
| 49 |
-
# CLI (local Windows): cloudscraper bypasses Cloudflare
|
| 50 |
-
# HF Spaces: plain requests (cloudscraper fingerprint gets blocked on datacenter IPs)
|
| 51 |
-
def init_session(use_cloudscraper=False):
|
| 52 |
-
global SESSION, HTTP_CLIENT
|
| 53 |
-
if use_cloudscraper:
|
| 54 |
-
try:
|
| 55 |
-
import cloudscraper
|
| 56 |
-
SESSION = cloudscraper.create_scraper()
|
| 57 |
-
HTTP_CLIENT = "cloudscraper"
|
| 58 |
-
return
|
| 59 |
-
except ImportError:
|
| 60 |
-
pass # fallback to requests
|
| 61 |
-
SESSION = req_lib.Session()
|
| 62 |
-
SESSION.headers.update({
|
| 63 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
|
| 64 |
-
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8',
|
| 65 |
-
'Accept-Language': 'en-US,en;q=0.5',
|
| 66 |
-
'Accept-Encoding': 'gzip, deflate, br',
|
| 67 |
-
'DNT': '1',
|
| 68 |
-
'Connection': 'keep-alive',
|
| 69 |
-
'Upgrade-Insecure-Requests': '1',
|
| 70 |
-
'Sec-Fetch-Dest': 'document',
|
| 71 |
-
'Sec-Fetch-Mode': 'navigate',
|
| 72 |
-
'Sec-Fetch-Site': 'none',
|
| 73 |
-
'Sec-Fetch-User': '?1',
|
| 74 |
-
'Cache-Control': 'max-age=0',
|
| 75 |
-
'Referer': 'https://fancaps.net/',
|
| 76 |
-
})
|
| 77 |
-
HTTP_CLIENT = "requests/browser-headers"
|
| 78 |
-
|
| 79 |
-
# Default: plain requests (for HF Spaces import)
|
| 80 |
-
SESSION = None
|
| 81 |
-
HTTP_CLIENT = None
|
| 82 |
-
init_session(use_cloudscraper=False)
|
| 83 |
-
|
| 84 |
-
# =============================================================================
|
| 85 |
-
# SCRAPING
|
| 86 |
-
# =============================================================================
|
| 87 |
-
def search_fancaps(prompt, anime=True, movies=False, tv=False, log_fn=None):
|
| 88 |
-
L = log_fn or print
|
| 89 |
-
url = f"https://fancaps.net/search.php?q={quote_plus(prompt)}&submit=Submit"
|
| 90 |
-
if anime: url += "&animeCB=Anime"
|
| 91 |
-
if movies: url += "&MoviesCB=Movies"
|
| 92 |
-
if tv: url += "&TVCB=TV"
|
| 93 |
-
L(f" URL: {url}")
|
| 94 |
-
try:
|
| 95 |
-
resp = SESSION.get(url, timeout=30)
|
| 96 |
-
L(f" Status: {resp.status_code}, Size: {len(resp.content)} bytes")
|
| 97 |
-
# Log key headers for debugging
|
| 98 |
-
cf_ray = resp.headers.get('cf-ray', 'none')
|
| 99 |
-
server = resp.headers.get('server', 'unknown')
|
| 100 |
-
L(f" Server: {server}, CF-Ray: {cf_ray}")
|
| 101 |
-
if resp.status_code != 200:
|
| 102 |
-
L(f" ERROR: HTTP {resp.status_code}")
|
| 103 |
-
# Show snippet of response to understand the block reason
|
| 104 |
-
content_snippet = resp.text[:500].replace('\n', ' ').strip()
|
| 105 |
-
L(f" Response snippet: {content_snippet[:200]}...")
|
| 106 |
-
return {}
|
| 107 |
-
soup = BeautifulSoup(resp.content, "html.parser")
|
| 108 |
-
# Debug: check if we got Cloudflare challenge
|
| 109 |
-
title = soup.title.string if soup.title else "No title"
|
| 110 |
-
L(f" Page title: {title[:50]}")
|
| 111 |
-
if "cloudflare" in title.lower() or "challenge" in title.lower():
|
| 112 |
-
L(" ERROR: Cloudflare challenge detected!")
|
| 113 |
-
return {}
|
| 114 |
-
except Exception as e:
|
| 115 |
-
L(f" ERROR: {type(e).__name__}: {e}")
|
| 116 |
-
return {}
|
| 117 |
-
results, cnt = {}, 1
|
| 118 |
-
divs = soup.find_all("div", class_="single_post_content")
|
| 119 |
-
L(f" Found {len(divs)} content divs")
|
| 120 |
-
for div in divs:
|
| 121 |
-
if not div.find('h2'): continue
|
| 122 |
-
for h2 in div.find_all('h2'):
|
| 123 |
-
title = h2.get_text(strip=True).lower()
|
| 124 |
-
cat = 'Movies' if 'movie' in title else 'TV' if 'tv' in title else 'Anime' if 'anime' in title else None
|
| 125 |
-
if not cat: continue
|
| 126 |
-
table = h2.find_next('table')
|
| 127 |
-
if not table: continue
|
| 128 |
-
results.setdefault(cat, [])
|
| 129 |
-
for h4 in table.find_all('h4'):
|
| 130 |
-
a = h4.find('a')
|
| 131 |
-
if a and a.get('href'):
|
| 132 |
-
results[cat].append((a.get_text(strip=True), a['href'], cnt)); cnt += 1
|
| 133 |
-
break
|
| 134 |
-
L(f" Parsed results: {sum(len(v) for v in results.values())} items in {list(results.keys())}")
|
| 135 |
-
return results
|
| 136 |
-
|
| 137 |
-
def get_episodes(url, log_fn=None):
|
| 138 |
-
L = log_fn or (lambda x: None)
|
| 139 |
-
links, page = [], 1
|
| 140 |
-
while True:
|
| 141 |
-
try:
|
| 142 |
-
resp = SESSION.get(f"{url}&page={page}", timeout=20)
|
| 143 |
-
L(f" get_episodes page {page}: status={resp.status_code}")
|
| 144 |
-
if resp.status_code != 200:
|
| 145 |
-
L(f" ERROR: {resp.text[:150]}...")
|
| 146 |
-
break
|
| 147 |
-
soup = BeautifulSoup(resp.content, "html.parser")
|
| 148 |
-
except Exception as e:
|
| 149 |
-
L(f" get_episodes ERROR: {type(e).__name__}: {e}")
|
| 150 |
-
break
|
| 151 |
-
btns = soup.find_all('a', class_='btn btn-block')
|
| 152 |
-
if not btns:
|
| 153 |
-
L(f" No episode buttons on page {page}")
|
| 154 |
-
break
|
| 155 |
-
links.extend([("https://fancaps.net" + b['href'] if b['href'].startswith('/') else b['href']) for b in btns if b.get('href')])
|
| 156 |
-
L(f" Found {len(btns)} episodes on page {page}, total: {len(links)}")
|
| 157 |
-
page += 1
|
| 158 |
-
return links or [url]
|
| 159 |
-
|
| 160 |
-
def get_frame_names(url, log_fn=None):
|
| 161 |
-
L = log_fn or (lambda x: None)
|
| 162 |
-
names, page = [], 1
|
| 163 |
-
while True:
|
| 164 |
-
try:
|
| 165 |
-
resp = SESSION.get(f"{url}&page={page}", timeout=20)
|
| 166 |
-
if resp.status_code != 200:
|
| 167 |
-
L(f" get_frames page {page}: status={resp.status_code}")
|
| 168 |
-
break
|
| 169 |
-
soup = BeautifulSoup(resp.content, "html.parser")
|
| 170 |
-
except Exception as e:
|
| 171 |
-
L(f" get_frames ERROR: {type(e).__name__}: {e}")
|
| 172 |
-
break
|
| 173 |
-
imgs = soup.find_all('img', class_='imageFade')
|
| 174 |
-
if not imgs:
|
| 175 |
-
if page == 1: L(f" No images found on first page!")
|
| 176 |
-
break
|
| 177 |
-
names.extend([s.split('/')[-1] for i in imgs if (s := i.get('src')) and s.split('/')[-1] not in names])
|
| 178 |
-
pager = soup.select_one('ul.pagination li:last-child a')
|
| 179 |
-
if not pager or pager.get('href') in ['#', None]: break
|
| 180 |
-
page += 1
|
| 181 |
-
L(f" Total frame names: {len(names)}")
|
| 182 |
-
return names
|
| 183 |
-
|
| 184 |
-
def download(url, folder, name, timeout=10, retries=3):
|
| 185 |
-
"""Download single image with retry - returns (success, status_code)."""
|
| 186 |
-
fp = os.path.join(folder, name)
|
| 187 |
-
if os.path.exists(fp): return True, 200
|
| 188 |
-
for attempt in range(retries):
|
| 189 |
-
try:
|
| 190 |
-
r = SESSION.get(url, stream=True, timeout=timeout)
|
| 191 |
-
if r.status_code == 200:
|
| 192 |
-
with open(fp, 'wb') as f:
|
| 193 |
-
for chunk in r.iter_content(16384):
|
| 194 |
-
if chunk: f.write(chunk)
|
| 195 |
-
return True, 200
|
| 196 |
-
if r.status_code == 429: # Rate limit - don't retry immediately
|
| 197 |
-
return False, 429
|
| 198 |
-
# Other errors - retry
|
| 199 |
-
except:
|
| 200 |
-
pass
|
| 201 |
-
if attempt < retries - 1:
|
| 202 |
-
time.sleep(1)
|
| 203 |
-
return False, None
|
| 204 |
-
|
| 205 |
-
def scrape(name, link, save_dir, max_imgs, progress=None, log_fn=None):
|
| 206 |
-
L = log_fn or print
|
| 207 |
-
url, folder = "https://fancaps.net" + link, os.path.join(save_dir, sanitize(name))
|
| 208 |
-
os.makedirs(folder, exist_ok=True)
|
| 209 |
-
section = 'movie' if '/movies/' in link else 'anime' if '/anime/' in link else 'tv'
|
| 210 |
-
L(f" [2/8] Scraping: {url}")
|
| 211 |
-
L(f" Section: {section}, max: {max_imgs}")
|
| 212 |
-
consecutive_429 = 0
|
| 213 |
-
max_429 = 3 # Abort after 3 consecutive 429s
|
| 214 |
-
|
| 215 |
-
if section == 'movie':
|
| 216 |
-
names = get_frame_names(url, log_fn=L)
|
| 217 |
-
L(f" Movie frames: {len(names)}")
|
| 218 |
-
sampled = random.sample(names, min(max_imgs, len(names))) if names else []
|
| 219 |
-
downloaded = 0
|
| 220 |
-
for i, n in enumerate(sampled):
|
| 221 |
-
if consecutive_429 >= max_429:
|
| 222 |
-
L(f" Aborting: {consecutive_429} consecutive 429s")
|
| 223 |
-
break
|
| 224 |
-
if i > 0: time.sleep(random.uniform(0.3, 0.8)) # Faster delay
|
| 225 |
-
try:
|
| 226 |
-
if progress and len(sampled) > 0: progress((i+1)/len(sampled), desc=f"Downloading {name[:20]}")
|
| 227 |
-
except: pass
|
| 228 |
-
success, status = download(f"https://cdni.fancaps.net/file/fancaps-{section}images/{n}", folder, n)
|
| 229 |
-
if success:
|
| 230 |
-
downloaded += 1
|
| 231 |
-
consecutive_429 = 0
|
| 232 |
-
elif status == 429:
|
| 233 |
-
consecutive_429 += 1
|
| 234 |
-
cooldown = 30 * consecutive_429
|
| 235 |
-
L(f" 429 rate limit ({consecutive_429}/{max_429}), cooling {cooldown}s...")
|
| 236 |
-
time.sleep(cooldown)
|
| 237 |
-
else:
|
| 238 |
-
consecutive_429 = 0
|
| 239 |
-
L(f" Downloaded: {downloaded}/{len(sampled)}")
|
| 240 |
-
else:
|
| 241 |
-
L(f" Fetching episodes...")
|
| 242 |
-
eps = get_episodes(url, log_fn=L)
|
| 243 |
-
L(f" Episodes: {len(eps)}")
|
| 244 |
-
total = 0
|
| 245 |
-
per_ep = max(1, max_imgs // len(eps)) if eps else max_imgs
|
| 246 |
-
for i, ep in enumerate(eps):
|
| 247 |
-
if total >= max_imgs or consecutive_429 >= max_429: break
|
| 248 |
-
names = get_frame_names(ep, log_fn=L)
|
| 249 |
-
if not names: continue
|
| 250 |
-
ep_dir = os.path.join(folder, f"Ep{i+1}")
|
| 251 |
-
os.makedirs(ep_dir, exist_ok=True)
|
| 252 |
-
sampled = random.sample(names, min(per_ep, len(names), max_imgs - total))
|
| 253 |
-
for j, n in enumerate(sampled):
|
| 254 |
-
if consecutive_429 >= max_429: break
|
| 255 |
-
if j > 0: time.sleep(random.uniform(0.3, 0.8)) # Faster delay
|
| 256 |
-
try:
|
| 257 |
-
if progress and max_imgs > 0: progress(total/max_imgs, desc=f"Ep{i+1}")
|
| 258 |
-
except: pass # Gradio progress can fail in some contexts
|
| 259 |
-
success, status = download(f"https://cdni.fancaps.net/file/fancaps-{section}images/{n}", ep_dir, n)
|
| 260 |
-
if success:
|
| 261 |
-
total += 1
|
| 262 |
-
consecutive_429 = 0
|
| 263 |
-
elif status == 429:
|
| 264 |
-
consecutive_429 += 1
|
| 265 |
-
cooldown = 30 * consecutive_429
|
| 266 |
-
L(f" 429 rate limit ({consecutive_429}/{max_429}), cooling {cooldown}s...")
|
| 267 |
-
time.sleep(cooldown)
|
| 268 |
-
else:
|
| 269 |
-
consecutive_429 = 0
|
| 270 |
-
L(f" Total downloaded: {total}")
|
| 271 |
-
|
| 272 |
-
# =============================================================================
|
| 273 |
-
# ML MODELS (cached)
|
| 274 |
-
# =============================================================================
|
| 275 |
-
_models = {}
|
| 276 |
-
|
| 277 |
-
def get_yolo():
|
| 278 |
-
if 'yolo' not in _models:
|
| 279 |
-
_models['yolo'] = torch.hub.load('ultralytics/yolov5', 'custom', path=str(YOLO_PATH), force_reload=False, verbose=False)
|
| 280 |
-
_models['yolo'].conf, _models['yolo'].iou = FACE_CONF, FACE_IOU
|
| 281 |
-
return _models['yolo']
|
| 282 |
-
|
| 283 |
-
def get_sim():
|
| 284 |
-
if 'sim' not in _models:
|
| 285 |
-
class SiameseNetwork(nn.Module):
|
| 286 |
-
def __init__(self):
|
| 287 |
-
super().__init__()
|
| 288 |
-
self.base_model = models.efficientnet_b0(weights=models.EfficientNet_B0_Weights.DEFAULT)
|
| 289 |
-
def forward(self, x):
|
| 290 |
-
return self.base_model(x) # 1000-class output (trained this way)
|
| 291 |
-
m = SiameseNetwork()
|
| 292 |
-
# Keep on CPU for consistent distance values across devices
|
| 293 |
-
m.load_state_dict(torch.load(str(SIM_PATH), map_location="cpu", weights_only=True))
|
| 294 |
-
m.eval()
|
| 295 |
-
_models['sim'] = m
|
| 296 |
-
return _models['sim']
|
| 297 |
-
|
| 298 |
-
def get_tagger():
|
| 299 |
-
if 'tag' not in _models:
|
| 300 |
-
mp, cp = huggingface_hub.hf_hub_download(WD_REPO, "model.onnx"), huggingface_hub.hf_hub_download(WD_REPO, "selected_tags.csv")
|
| 301 |
-
tags = [str(x).replace('_', ' ') for x in pd.read_csv(cp)['name'].tolist()]
|
| 302 |
-
sess = rt.InferenceSession(mp, providers=['CPUExecutionProvider'])
|
| 303 |
-
_models['tag'] = (sess, tags, sess.get_inputs()[0].shape[1])
|
| 304 |
-
return _models['tag']
|
| 305 |
-
|
| 306 |
-
# =============================================================================
|
| 307 |
-
# PROCESSING
|
| 308 |
-
# =============================================================================
|
| 309 |
-
def dedup(paths, thresh=0.98):
|
| 310 |
-
if not paths: return [], []
|
| 311 |
-
m = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1); m.fc = nn.Identity(); m.eval()
|
| 312 |
-
tf = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([.485,.456,.406],[.229,.224,.225])])
|
| 313 |
-
emb, valid = [], []
|
| 314 |
-
with torch.no_grad():
|
| 315 |
-
for i in range(0, len(paths), 32):
|
| 316 |
-
batch = [(tf(Image.open(p).convert('RGB')), p) for p in paths[i:i+32] if valid_img(p)]
|
| 317 |
-
if batch:
|
| 318 |
-
x = torch.stack([b[0] for b in batch])
|
| 319 |
-
emb.append(m(x).numpy()); valid.extend([b[1] for b in batch])
|
| 320 |
-
del m
|
| 321 |
-
if not emb: return [], []
|
| 322 |
-
emb = np.vstack(emb); emb /= np.linalg.norm(emb, axis=1, keepdims=True).clip(1e-8)
|
| 323 |
-
sim = emb @ emb.T; np.fill_diagonal(sim, 0)
|
| 324 |
-
keep, drop = [], set()
|
| 325 |
-
for i in range(len(valid)):
|
| 326 |
-
if i not in drop: keep.append(valid[i]); drop.update(j for j in np.where(sim[i] > thresh)[0] if j > i)
|
| 327 |
-
return keep, [valid[i] for i in drop]
|
| 328 |
-
|
| 329 |
-
def detect_faces(paths, out_dir):
|
| 330 |
-
yolo = get_yolo(); os.makedirs(out_dir, exist_ok=True); cnt = 0
|
| 331 |
-
for p in paths:
|
| 332 |
-
try:
|
| 333 |
-
img = Image.open(p).convert('RGB'); w, h = img.size
|
| 334 |
-
for j, det in enumerate(yolo(img, size=640).xyxy[0].cpu().numpy()):
|
| 335 |
-
x1, y1, x2, y2, conf, _ = det
|
| 336 |
-
bw, bh = x2-x1, y2-y1
|
| 337 |
-
x1, y1, x2, y2 = max(0, x1-bw*CROP_PAD), max(0, y1-bh*CROP_PAD), min(w, x2+bw*CROP_PAD), min(h, y2+bh*CROP_PAD)
|
| 338 |
-
if min(x2-x1, y2-y1) >= MIN_FACE:
|
| 339 |
-
img.crop((int(x1), int(y1), int(x2), int(y2))).save(os.path.join(out_dir, f"{Path(p).stem}-{j+1}-{conf:.2f}.jpg"), quality=95)
|
| 340 |
-
cnt += 1
|
| 341 |
-
except: pass
|
| 342 |
-
return cnt
|
| 343 |
-
|
| 344 |
-
def face_emb(paths):
|
| 345 |
-
if not paths: return np.array([]), []
|
| 346 |
-
m = get_sim() # Always on CPU for consistent distances
|
| 347 |
-
def pad(img):
|
| 348 |
-
t, w, h = FACE_SZ, img.size[0], img.size[1]; r = w/h
|
| 349 |
-
nw, nh = (t, int(t/r)) if r > 1 else (int(t*r), t)
|
| 350 |
-
img = img.resize((nw, nh), Image.BICUBIC)
|
| 351 |
-
out = Image.new('RGB', (t, t), (0,0,0)); out.paste(img, ((t-nw)//2, (t-nh)//2)); return out
|
| 352 |
-
tf = transforms.Compose([lambda x: pad(x.convert('RGB') if x.mode == 'RGBA' else x), transforms.ToTensor()])
|
| 353 |
-
emb, valid = [], []
|
| 354 |
-
with torch.no_grad():
|
| 355 |
-
for i in range(0, len(paths), BATCH_SZ):
|
| 356 |
-
batch = [(tf(Image.open(p)), p) for p in paths[i:i+BATCH_SZ] if valid_img(p)]
|
| 357 |
-
if batch:
|
| 358 |
-
x = torch.stack([b[0] for b in batch]) # CPU tensor
|
| 359 |
-
emb.append(m(x).numpy())
|
| 360 |
-
valid.extend([b[1] for b in batch])
|
| 361 |
-
return (np.vstack(emb), valid) if emb else (np.array([]), [])
|
| 362 |
-
|
| 363 |
-
def tag(path, act_tag="", char_tag=""):
|
| 364 |
-
sess, tags, sz = get_tagger()
|
| 365 |
-
img = Image.open(path).convert('RGB'); w, h = img.size
|
| 366 |
-
s = min(sz/w, sz/h); nw, nh = int(w*s), int(h*s)
|
| 367 |
-
pad = Image.new('RGB', (sz, sz), (255,255,255)); pad.paste(img.resize((nw, nh), Image.BICUBIC), ((sz-nw)//2, (sz-nh)//2))
|
| 368 |
-
probs = sess.run(None, {sess.get_inputs()[0].name: np.expand_dims(np.array(pad).astype(np.float32)[:,:,::-1], 0)})[0][0]
|
| 369 |
-
found = [tags[i] for i, p in enumerate(probs) if p > TAG_THRESH and tags[i] not in BLACKLIST]
|
| 370 |
-
# Prepend activation tag and character tag if provided
|
| 371 |
-
prefix = []
|
| 372 |
-
if act_tag: prefix.append(act_tag); found = [t for t in found if t != act_tag]
|
| 373 |
-
if char_tag: prefix.append(char_tag.replace("_", " ")); found = [t for t in found if t != char_tag.replace("_", " ")]
|
| 374 |
-
return prefix + found
|
| 375 |
-
|
| 376 |
-
# =============================================================================
|
| 377 |
-
# PIPELINE
|
| 378 |
-
# =============================================================================
|
| 379 |
-
def parse_direct_url(url):
|
| 380 |
-
"""Parse direct fancaps URL, extract show name and relative link. Returns (name, link) or (None, None)."""
|
| 381 |
-
# Match patterns: showimages.php?ID-Name, MovieImages.php?movieid=ID&name=Name, episodeimages.php?ID-Name
|
| 382 |
-
patterns = [
|
| 383 |
-
r'fancaps\.net/anime/showimages\.php\?(\d+)-([^&/]+)', # anime show
|
| 384 |
-
r'fancaps\.net/tv/showimages\.php\?(\d+)-([^&/]+)', # tv show
|
| 385 |
-
r'fancaps\.net/movies/MovieImages\.php\?.*?movieid=(\d+)', # movie
|
| 386 |
-
]
|
| 387 |
-
for pat in patterns:
|
| 388 |
-
m = re.search(pat, url)
|
| 389 |
-
if m:
|
| 390 |
-
if 'anime' in url: section = 'anime'
|
| 391 |
-
elif 'movies' in url: section = 'movies'
|
| 392 |
-
else: section = 'tv'
|
| 393 |
-
# Extract name from URL (replace underscores with spaces)
|
| 394 |
-
name = m.group(2).replace('_', ' ') if len(m.groups()) > 1 else f"Show_{m.group(1)}"
|
| 395 |
-
# Build relative link (what scrape() expects)
|
| 396 |
-
if section == 'movies':
|
| 397 |
-
link = f"/movies/MovieImages.php?movieid={m.group(1)}"
|
| 398 |
-
else:
|
| 399 |
-
link = f"/{section}/showimages.php?{m.group(1)}-{m.group(2) if len(m.groups()) > 1 else ''}"
|
| 400 |
-
return name, link
|
| 401 |
-
return None, None
|
| 402 |
-
|
| 403 |
-
def run(query, char, examples, max_img, thresh, act_tag, anime, movies, tv, progress=None, cli_mode=False):
|
| 404 |
-
log = []
|
| 405 |
-
def L(m): log.append(m); print(m)
|
| 406 |
-
def prog(val, desc=""):
|
| 407 |
-
if progress and not cli_mode: progress(val, desc=desc)
|
| 408 |
-
|
| 409 |
-
work = tempfile.mkdtemp(prefix="ds_")
|
| 410 |
-
dirs = {k: os.path.join(work, f"{i}_{k}") for i, k in enumerate(['scrapped','filtered','faces','ex_faces','similar','results'], 1)}
|
| 411 |
-
for d in dirs.values(): os.makedirs(d, exist_ok=True)
|
| 412 |
-
final_zip = None # Track ZIP for cleanup
|
| 413 |
-
|
| 414 |
-
try:
|
| 415 |
-
L(f"HTTP client: {HTTP_CLIENT}")
|
| 416 |
-
t0 = time.time()
|
| 417 |
-
|
| 418 |
-
# Check if query is a direct fancaps URL (bypasses search, works on HF Spaces)
|
| 419 |
-
if 'fancaps.net' in query and ('showimages.php' in query or 'MovieImages.php' in query):
|
| 420 |
-
L(f"[1/8] Direct URL mode")
|
| 421 |
-
name, link = parse_direct_url(query)
|
| 422 |
-
if not link:
|
| 423 |
-
return None, "\n".join(log) + "\n\nCouldn't parse URL!"
|
| 424 |
-
item = (name, link, 1)
|
| 425 |
-
L(f" Parsed: {name}")
|
| 426 |
-
else:
|
| 427 |
-
L(f"[1/8] Search: {query}")
|
| 428 |
-
prog(0.05, desc="Searching...")
|
| 429 |
-
res = search_fancaps(query, anime, movies, tv, log_fn=L)
|
| 430 |
-
if not res:
|
| 431 |
-
return None, "\n".join(log) + "\n\nSearch blocked! Use direct fancaps URL."
|
| 432 |
-
item = next((items[0] for items in res.values() if items), None)
|
| 433 |
-
if not item: return None, "No results!"
|
| 434 |
-
|
| 435 |
-
show_name = item[0]
|
| 436 |
-
if not char: char = sanitize(show_name)
|
| 437 |
-
t1 = time.time(); L(f" Found: {show_name} ({t1-t0:.0f}s)"); prog(0.1, desc="Downloading...")
|
| 438 |
-
|
| 439 |
-
# [2/8] Scrape
|
| 440 |
-
scrape(item[0], item[1], dirs['scrapped'], max_img, progress if not cli_mode else None, log_fn=L)
|
| 441 |
-
imgs = get_imgs(dirs['scrapped'])
|
| 442 |
-
t2 = time.time(); L(f"[2/8] Downloaded: {len(imgs)} ({t2-t1:.0f}s)")
|
| 443 |
-
if not imgs: return None, "No images downloaded!"
|
| 444 |
-
|
| 445 |
-
# [3/8] Dedup
|
| 446 |
-
prog(0.3, desc="Dedup...")
|
| 447 |
-
imgs = [p for p in imgs if valid_img(p)]
|
| 448 |
-
kept, rm = dedup(imgs)
|
| 449 |
-
for p in kept: shutil.copy(p, os.path.join(dirs['filtered'], os.path.basename(p)))
|
| 450 |
-
t3 = time.time(); L(f"[3/8] Dedup: {len(kept)} kept, -{len(rm)} ({t3-t2:.0f}s)")
|
| 451 |
-
|
| 452 |
-
# [4/8] Detect faces
|
| 453 |
-
prog(0.4, desc="Faces...")
|
| 454 |
-
n = detect_faces(get_imgs(dirs['filtered']), dirs['faces'])
|
| 455 |
-
t4 = time.time(); L(f"[4/8] Faces: {n} ({t4-t3:.0f}s)")
|
| 456 |
-
if n == 0: return None, "No faces detected!"
|
| 457 |
-
|
| 458 |
-
# [5/8] Process examples
|
| 459 |
-
prog(0.5, desc="Examples...")
|
| 460 |
-
ex_paths = [p for p in (examples or []) if p and os.path.exists(p)]
|
| 461 |
-
if not ex_paths: ex_paths = [p for p in EXAMPLES if os.path.exists(p)]
|
| 462 |
-
if not ex_paths: return None, "No example images!"
|
| 463 |
-
n_ex = detect_faces(ex_paths, dirs['ex_faces'])
|
| 464 |
-
t5 = time.time(); L(f"[5/8] Examples: {len(ex_paths)} imgs -> {n_ex} faces ({t5-t4:.0f}s)")
|
| 465 |
-
if n_ex == 0: return None, "No faces in examples!"
|
| 466 |
-
|
| 467 |
-
# [6/8] Match
|
| 468 |
-
prog(0.6, desc="Matching...")
|
| 469 |
-
f_emb, f_valid = face_emb(get_imgs(dirs['faces']))
|
| 470 |
-
e_emb, _ = face_emb(get_imgs(dirs['ex_faces']))
|
| 471 |
-
dists = pairwise_distances(f_emb, e_emb, metric='euclidean').min(axis=1)
|
| 472 |
-
similar_idx = np.where(dists < thresh)[0]
|
| 473 |
-
similar = [f_valid[i] for i in similar_idx]
|
| 474 |
-
similar_dists = dists[similar_idx]
|
| 475 |
-
t6 = time.time()
|
| 476 |
-
L(f"[6/8] Matches: {len(similar)} (thresh={thresh}) ({t6-t5:.0f}s)")
|
| 477 |
-
if len(similar_dists) > 0:
|
| 478 |
-
L(f" Distances: min={similar_dists.min():.1f}, max={similar_dists.max():.1f}, mean={similar_dists.mean():.1f}")
|
| 479 |
-
if not similar: return None, f"No matches! Try threshold > {thresh}"
|
| 480 |
-
|
| 481 |
-
# [7/8] Get originals
|
| 482 |
-
prog(0.7, desc="Collect...")
|
| 483 |
-
origs = set()
|
| 484 |
-
orig_to_dist = {}
|
| 485 |
-
for i, fp in enumerate(similar):
|
| 486 |
-
parts = os.path.basename(fp).rsplit('-', 2)
|
| 487 |
-
base = parts[0] if len(parts) >= 3 else Path(fp).stem
|
| 488 |
-
for ext in EXTS:
|
| 489 |
-
op = os.path.join(dirs['filtered'], base + ext)
|
| 490 |
-
if os.path.exists(op):
|
| 491 |
-
origs.add(op)
|
| 492 |
-
orig_to_dist[os.path.basename(op)] = similar_dists[i]
|
| 493 |
-
break
|
| 494 |
-
res_dir = os.path.join(work, f"results_{sanitize(char)}")
|
| 495 |
-
os.makedirs(res_dir, exist_ok=True)
|
| 496 |
-
for p in origs: shutil.copy(p, os.path.join(res_dir, os.path.basename(p)))
|
| 497 |
-
t7 = time.time(); L(f"[7/8] Collected: {len(origs)} ({t7-t6:.0f}s)")
|
| 498 |
-
|
| 499 |
-
# [8/8] Tag
|
| 500 |
-
prog(0.8, desc="Tagging...")
|
| 501 |
-
char_tag = char if char != sanitize(show_name) else ""
|
| 502 |
-
for p in get_imgs(res_dir):
|
| 503 |
-
tags = tag(p, act_tag, char_tag)
|
| 504 |
-
with open(os.path.splitext(p)[0] + ".txt", 'w') as f: f.write(", ".join(tags))
|
| 505 |
-
t8 = time.time(); L(f"[8/8] Tagged: {len(origs)} ({t8-t7:.0f}s)")
|
| 506 |
-
|
| 507 |
-
# Log each image with distance
|
| 508 |
-
L(f"\nResults (distance to ref):")
|
| 509 |
-
for name, d in sorted(orig_to_dist.items(), key=lambda x: x[1]):
|
| 510 |
-
L(f" {name}: {d:.1f}")
|
| 511 |
-
|
| 512 |
-
# Zip
|
| 513 |
-
prog(0.95, desc="Zipping...")
|
| 514 |
-
zp = os.path.join(work, f"{sanitize(char)}_dataset.zip")
|
| 515 |
-
with zipfile.ZipFile(zp, 'w', zipfile.ZIP_DEFLATED) as z:
|
| 516 |
-
for p in get_imgs(res_dir) + [os.path.splitext(p)[0]+".txt" for p in get_imgs(res_dir)]:
|
| 517 |
-
if os.path.exists(p): z.write(p, os.path.basename(p))
|
| 518 |
-
# Copy ZIP to persistent temp location (Gradio needs file to exist after return)
|
| 519 |
-
final_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip", prefix=f"{sanitize(char)}_").name
|
| 520 |
-
shutil.copy(zp, final_zip)
|
| 521 |
-
L(f"\nDone! {len(origs)} images, total {t8-t0:.0f}s"); prog(1.0, desc="Complete!")
|
| 522 |
-
return final_zip, "\n".join(log)
|
| 523 |
-
except Exception as e:
|
| 524 |
-
import traceback
|
| 525 |
-
return None, "\n".join(log) + f"\n\nERROR: {e}\n{traceback.format_exc()}"
|
| 526 |
-
finally:
|
| 527 |
-
# Clean up work directory (ZIP already copied out)
|
| 528 |
-
if os.path.exists(work):
|
| 529 |
-
shutil.rmtree(work, ignore_errors=True)
|
| 530 |
-
|
| 531 |
-
# =============================================================================
|
| 532 |
-
# UI
|
| 533 |
-
# =============================================================================
|
| 534 |
-
css = """
|
| 535 |
-
.gradio-container { padding-top: 10px !important; }
|
| 536 |
-
.compact-group { margin-bottom: 8px !important; }
|
| 537 |
-
"""
|
| 538 |
-
|
| 539 |
-
with gr.Blocks(title="SD Dataset Automaker: Fancaps → Face Crop (YOLO) → Similarity (Siamese) → WD Tagger → ZIP") as demo:
|
| 540 |
-
gr.Markdown("### SD Dataset Automaker: Fancaps → Face Crop (YOLO) → Similarity (Siamese) → WD Tagger → ZIP")
|
| 541 |
-
|
| 542 |
-
with gr.Row():
|
| 543 |
-
with gr.Column(scale=3):
|
| 544 |
-
# Compact input group
|
| 545 |
-
with gr.Group():
|
| 546 |
-
with gr.Row():
|
| 547 |
-
query = gr.Textbox(
|
| 548 |
-
label="Anime / Movie / Fancaps URL",
|
| 549 |
-
placeholder="'Cowboy Bebop' or paste URL",
|
| 550 |
-
scale=3
|
| 551 |
-
)
|
| 552 |
-
char = gr.Textbox(label="Character (optional, appends to tags)", placeholder="spike_spiegel", scale=2)
|
| 553 |
-
|
| 554 |
-
with gr.Row():
|
| 555 |
-
ref_imgs = gr.Gallery(
|
| 556 |
-
label="Reference Face Image(s)",
|
| 557 |
-
columns=4,
|
| 558 |
-
height=100,
|
| 559 |
-
interactive=True,
|
| 560 |
-
object_fit="scale-down",
|
| 561 |
-
scale=3,
|
| 562 |
-
)
|
| 563 |
-
run_btn = gr.Button("Generate Dataset", variant="primary", size="lg", scale=1)
|
| 564 |
-
|
| 565 |
-
# Hidden File input for MCP compatibility (Gallery $ref schema bug persists in Gradio 6.0.1)
|
| 566 |
-
ref_files = gr.File(
|
| 567 |
-
label="Reference Images (MCP)",
|
| 568 |
-
file_count="multiple",
|
| 569 |
-
file_types=["image"],
|
| 570 |
-
visible=False,
|
| 571 |
-
)
|
| 572 |
-
|
| 573 |
-
# gr.Examples + gr.Gallery works in Gradio 5.46.0+ (PR #11787)
|
| 574 |
-
gr.Examples(
|
| 575 |
-
examples=[
|
| 576 |
-
["https://fancaps.net/anime/showimages.php?3092-Cowboy_Bebop", "spike_spiegel", EXAMPLES],
|
| 577 |
-
],
|
| 578 |
-
inputs=[query, char, ref_imgs],
|
| 579 |
-
label="Example (click to load)",
|
| 580 |
-
)
|
| 581 |
-
|
| 582 |
-
# Advanced settings in accordion
|
| 583 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 584 |
-
with gr.Row():
|
| 585 |
-
max_img = gr.Slider(50, 500, 200, step=50, label="Max Downloads (frames to scrape)")
|
| 586 |
-
thresh = gr.Slider(20, 60, 32, step=1, label="Face Similarity (lower=stricter)")
|
| 587 |
-
with gr.Row():
|
| 588 |
-
act_tag = gr.Textbox(label="Trigger Word (prepends to captions)", placeholder="e.g. sks_style", scale=2)
|
| 589 |
-
anime_cb = gr.Checkbox(label="Anime", value=True, scale=1)
|
| 590 |
-
movies_cb = gr.Checkbox(label="Movies", scale=1)
|
| 591 |
-
tv_cb = gr.Checkbox(label="TV", scale=1)
|
| 592 |
-
|
| 593 |
-
with gr.Column(scale=1):
|
| 594 |
-
out_file = gr.File(label="Download ZIP", interactive=False)
|
| 595 |
-
with gr.Accordion("Log", open=True):
|
| 596 |
-
out_log = gr.Textbox(label="", lines=12, max_lines=50, show_label=False, autoscroll=False)
|
| 597 |
-
gr.Markdown("*CPU: ~5-10 min/run*")
|
| 598 |
-
|
| 599 |
-
def process(q, c, imgs, files, mi, th, at, an, mo, tv, prog=gr.Progress()):
|
| 600 |
-
if not q:
|
| 601 |
-
gr.Warning("Enter anime name or URL")
|
| 602 |
-
return None, ""
|
| 603 |
-
# Collect paths from Gallery (imgs) or File input (files)
|
| 604 |
-
paths = []
|
| 605 |
-
for item in (imgs or []):
|
| 606 |
-
p = item[0] if isinstance(item, (list, tuple)) else item
|
| 607 |
-
if p and os.path.exists(p): paths.append(p)
|
| 608 |
-
if not paths and files:
|
| 609 |
-
for f in (files if isinstance(files, list) else [files]):
|
| 610 |
-
fp = f.name if hasattr(f, 'name') else str(f)
|
| 611 |
-
if fp and os.path.exists(fp): paths.append(fp)
|
| 612 |
-
if not paths:
|
| 613 |
-
gr.Warning("Upload reference images or click 'Load Example'")
|
| 614 |
-
return None, ""
|
| 615 |
-
if 'fancaps.net' in q:
|
| 616 |
-
gr.Info("Direct URL detected")
|
| 617 |
-
else:
|
| 618 |
-
gr.Info(f"Searching: {q}")
|
| 619 |
-
zp, log = run(q, c, paths, mi, th, at, an, mo, tv, prog)
|
| 620 |
-
if zp:
|
| 621 |
-
gr.Info("Done!")
|
| 622 |
-
return zp, log
|
| 623 |
-
|
| 624 |
-
run_btn.click(process, [query, char, ref_imgs, ref_files, max_img, thresh, act_tag, anime_cb, movies_cb, tv_cb], [out_file, out_log])
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
"""
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
if not
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
)
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
print(f"SD Dataset Automaker - CLI Mode")
|
| 694 |
-
print(f" Title: {args.title}")
|
| 695 |
-
print(f" Refs: {len(ref_imgs)} images")
|
| 696 |
-
print(f" Char: {args.char or '(auto from title)'}")
|
| 697 |
-
print()
|
| 698 |
-
|
| 699 |
-
zp, log = run(
|
| 700 |
-
query=args.title,
|
| 701 |
-
char=args.char,
|
| 702 |
-
examples=ref_imgs,
|
| 703 |
-
max_img=args.max,
|
| 704 |
-
thresh=args.thresh,
|
| 705 |
-
act_tag=args.tag,
|
| 706 |
-
anime=args.anime,
|
| 707 |
-
movies=args.movies,
|
| 708 |
-
tv=args.tv,
|
| 709 |
-
cli_mode=True
|
| 710 |
-
)
|
| 711 |
-
|
| 712 |
-
if zp:
|
| 713 |
-
# Copy to output dir
|
| 714 |
-
out_path = os.path.join(args.output, os.path.basename(zp))
|
| 715 |
-
shutil.copy(zp, out_path)
|
| 716 |
-
print(f"\nSaved: {out_path}")
|
| 717 |
-
else:
|
| 718 |
-
print(f"\nFailed!")
|
| 719 |
-
sys.exit(1)
|
| 720 |
-
|
| 721 |
-
if __name__ == "__main__":
|
| 722 |
-
# CLI mode if args provided, else Gradio UI
|
| 723 |
-
if len(sys.argv) > 1:
|
| 724 |
-
run_cli()
|
| 725 |
-
else:
|
| 726 |
-
# Gradio UI mode - combine main UI and MCP interface
|
| 727 |
-
allowed_dir = os.path.dirname(os.path.abspath(__file__))
|
| 728 |
-
app = gr.TabbedInterface(
|
| 729 |
-
[demo, mcp_interface],
|
| 730 |
-
["Dataset Maker", "MCP API"],
|
| 731 |
-
title="SD Dataset Automaker"
|
| 732 |
-
)
|
| 733 |
-
app.launch(
|
| 734 |
-
server_name="0.0.0.0",
|
| 735 |
-
server_port=7860,
|
| 736 |
-
mcp_server=True,
|
| 737 |
-
show_error=True,
|
| 738 |
-
allowed_paths=[allowed_dir],
|
| 739 |
-
)
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""SD Dataset Automaker - HF Space (CPU) - Anime character dataset generator for LoRA/fine-tuning."""
|
| 3 |
+
|
| 4 |
+
import warnings
|
| 5 |
+
warnings.filterwarnings('ignore', category=FutureWarning) # Suppress torch.cuda.amp spam
|
| 6 |
+
warnings.filterwarnings('ignore', category=UserWarning, message='.*trust_repo.*')
|
| 7 |
+
|
| 8 |
+
import os, re, shutil, zipfile, random, tempfile, argparse, sys
|
| 9 |
+
from urllib.parse import quote_plus
|
| 10 |
+
from collections import Counter
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
import gradio as gr
|
| 15 |
+
from bs4 import BeautifulSoup
|
| 16 |
+
import requests as req_lib
|
| 17 |
+
import time
|
| 18 |
+
import numpy as np
|
| 19 |
+
from PIL import Image
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
from torchvision import models, transforms
|
| 23 |
+
from sklearn.metrics.pairwise import pairwise_distances
|
| 24 |
+
import onnxruntime as rt
|
| 25 |
+
import pandas as pd
|
| 26 |
+
import huggingface_hub
|
| 27 |
+
|
| 28 |
+
# =============================================================================
|
| 29 |
+
# CONFIG
|
| 30 |
+
# =============================================================================
|
| 31 |
+
EXTS = ('.jpg', '.jpeg', '.png')
|
| 32 |
+
MODEL_DIR = Path(__file__).parent.resolve() # Ensure absolute path
|
| 33 |
+
YOLO_PATH = MODEL_DIR / "yolov5s_anime.pt"
|
| 34 |
+
SIM_PATH = MODEL_DIR / "similarity.pt"
|
| 35 |
+
EXAMPLES = [str(MODEL_DIR / f"from_url_spike_spiegel{i}.jpg") for i in range(1, 4)] # absolute paths for gr.Examples
|
| 36 |
+
WD_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
|
| 37 |
+
TAG_THRESH, BLACKLIST = 0.35, ["bangs", "breasts", "multicolored hair", "gradient hair", "two-tone hair", "virtual youtuber"]
|
| 38 |
+
FACE_CONF, FACE_IOU, MIN_FACE, CROP_PAD = 0.5, 0.5, 35, 0.2
|
| 39 |
+
SIM_THRESH, BATCH_SZ, FACE_SZ = 32, 16, 224
|
| 40 |
+
|
| 41 |
+
# =============================================================================
|
| 42 |
+
# UTILS
|
| 43 |
+
# =============================================================================
|
| 44 |
+
sanitize = lambda s: re.sub(r'[^\w.-]', '', s.replace(" ", "_"))
|
| 45 |
+
get_imgs = lambda d: sorted([os.path.join(r,f) for r,_,fs in os.walk(d) for f in fs if f.lower().endswith(EXTS)])
|
| 46 |
+
valid_img = lambda p: (lambda i: i.load() or True)(Image.open(p)) if os.path.exists(p) else False
|
| 47 |
+
|
| 48 |
+
# HTTP session - mode depends on environment
|
| 49 |
+
# CLI (local Windows): cloudscraper bypasses Cloudflare
|
| 50 |
+
# HF Spaces: plain requests (cloudscraper fingerprint gets blocked on datacenter IPs)
|
| 51 |
+
def init_session(use_cloudscraper=False):
|
| 52 |
+
global SESSION, HTTP_CLIENT
|
| 53 |
+
if use_cloudscraper:
|
| 54 |
+
try:
|
| 55 |
+
import cloudscraper
|
| 56 |
+
SESSION = cloudscraper.create_scraper()
|
| 57 |
+
HTTP_CLIENT = "cloudscraper"
|
| 58 |
+
return
|
| 59 |
+
except ImportError:
|
| 60 |
+
pass # fallback to requests
|
| 61 |
+
SESSION = req_lib.Session()
|
| 62 |
+
SESSION.headers.update({
|
| 63 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
|
| 64 |
+
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8',
|
| 65 |
+
'Accept-Language': 'en-US,en;q=0.5',
|
| 66 |
+
'Accept-Encoding': 'gzip, deflate, br',
|
| 67 |
+
'DNT': '1',
|
| 68 |
+
'Connection': 'keep-alive',
|
| 69 |
+
'Upgrade-Insecure-Requests': '1',
|
| 70 |
+
'Sec-Fetch-Dest': 'document',
|
| 71 |
+
'Sec-Fetch-Mode': 'navigate',
|
| 72 |
+
'Sec-Fetch-Site': 'none',
|
| 73 |
+
'Sec-Fetch-User': '?1',
|
| 74 |
+
'Cache-Control': 'max-age=0',
|
| 75 |
+
'Referer': 'https://fancaps.net/',
|
| 76 |
+
})
|
| 77 |
+
HTTP_CLIENT = "requests/browser-headers"
|
| 78 |
+
|
| 79 |
+
# Default: plain requests (for HF Spaces import)
|
| 80 |
+
SESSION = None
|
| 81 |
+
HTTP_CLIENT = None
|
| 82 |
+
init_session(use_cloudscraper=False)
|
| 83 |
+
|
| 84 |
+
# =============================================================================
|
| 85 |
+
# SCRAPING
|
| 86 |
+
# =============================================================================
|
| 87 |
+
def search_fancaps(prompt, anime=True, movies=False, tv=False, log_fn=None):
|
| 88 |
+
L = log_fn or print
|
| 89 |
+
url = f"https://fancaps.net/search.php?q={quote_plus(prompt)}&submit=Submit"
|
| 90 |
+
if anime: url += "&animeCB=Anime"
|
| 91 |
+
if movies: url += "&MoviesCB=Movies"
|
| 92 |
+
if tv: url += "&TVCB=TV"
|
| 93 |
+
L(f" URL: {url}")
|
| 94 |
+
try:
|
| 95 |
+
resp = SESSION.get(url, timeout=30)
|
| 96 |
+
L(f" Status: {resp.status_code}, Size: {len(resp.content)} bytes")
|
| 97 |
+
# Log key headers for debugging
|
| 98 |
+
cf_ray = resp.headers.get('cf-ray', 'none')
|
| 99 |
+
server = resp.headers.get('server', 'unknown')
|
| 100 |
+
L(f" Server: {server}, CF-Ray: {cf_ray}")
|
| 101 |
+
if resp.status_code != 200:
|
| 102 |
+
L(f" ERROR: HTTP {resp.status_code}")
|
| 103 |
+
# Show snippet of response to understand the block reason
|
| 104 |
+
content_snippet = resp.text[:500].replace('\n', ' ').strip()
|
| 105 |
+
L(f" Response snippet: {content_snippet[:200]}...")
|
| 106 |
+
return {}
|
| 107 |
+
soup = BeautifulSoup(resp.content, "html.parser")
|
| 108 |
+
# Debug: check if we got Cloudflare challenge
|
| 109 |
+
title = soup.title.string if soup.title else "No title"
|
| 110 |
+
L(f" Page title: {title[:50]}")
|
| 111 |
+
if "cloudflare" in title.lower() or "challenge" in title.lower():
|
| 112 |
+
L(" ERROR: Cloudflare challenge detected!")
|
| 113 |
+
return {}
|
| 114 |
+
except Exception as e:
|
| 115 |
+
L(f" ERROR: {type(e).__name__}: {e}")
|
| 116 |
+
return {}
|
| 117 |
+
results, cnt = {}, 1
|
| 118 |
+
divs = soup.find_all("div", class_="single_post_content")
|
| 119 |
+
L(f" Found {len(divs)} content divs")
|
| 120 |
+
for div in divs:
|
| 121 |
+
if not div.find('h2'): continue
|
| 122 |
+
for h2 in div.find_all('h2'):
|
| 123 |
+
title = h2.get_text(strip=True).lower()
|
| 124 |
+
cat = 'Movies' if 'movie' in title else 'TV' if 'tv' in title else 'Anime' if 'anime' in title else None
|
| 125 |
+
if not cat: continue
|
| 126 |
+
table = h2.find_next('table')
|
| 127 |
+
if not table: continue
|
| 128 |
+
results.setdefault(cat, [])
|
| 129 |
+
for h4 in table.find_all('h4'):
|
| 130 |
+
a = h4.find('a')
|
| 131 |
+
if a and a.get('href'):
|
| 132 |
+
results[cat].append((a.get_text(strip=True), a['href'], cnt)); cnt += 1
|
| 133 |
+
break
|
| 134 |
+
L(f" Parsed results: {sum(len(v) for v in results.values())} items in {list(results.keys())}")
|
| 135 |
+
return results
|
| 136 |
+
|
| 137 |
+
def get_episodes(url, log_fn=None):
|
| 138 |
+
L = log_fn or (lambda x: None)
|
| 139 |
+
links, page = [], 1
|
| 140 |
+
while True:
|
| 141 |
+
try:
|
| 142 |
+
resp = SESSION.get(f"{url}&page={page}", timeout=20)
|
| 143 |
+
L(f" get_episodes page {page}: status={resp.status_code}")
|
| 144 |
+
if resp.status_code != 200:
|
| 145 |
+
L(f" ERROR: {resp.text[:150]}...")
|
| 146 |
+
break
|
| 147 |
+
soup = BeautifulSoup(resp.content, "html.parser")
|
| 148 |
+
except Exception as e:
|
| 149 |
+
L(f" get_episodes ERROR: {type(e).__name__}: {e}")
|
| 150 |
+
break
|
| 151 |
+
btns = soup.find_all('a', class_='btn btn-block')
|
| 152 |
+
if not btns:
|
| 153 |
+
L(f" No episode buttons on page {page}")
|
| 154 |
+
break
|
| 155 |
+
links.extend([("https://fancaps.net" + b['href'] if b['href'].startswith('/') else b['href']) for b in btns if b.get('href')])
|
| 156 |
+
L(f" Found {len(btns)} episodes on page {page}, total: {len(links)}")
|
| 157 |
+
page += 1
|
| 158 |
+
return links or [url]
|
| 159 |
+
|
| 160 |
+
def get_frame_names(url, log_fn=None):
|
| 161 |
+
L = log_fn or (lambda x: None)
|
| 162 |
+
names, page = [], 1
|
| 163 |
+
while True:
|
| 164 |
+
try:
|
| 165 |
+
resp = SESSION.get(f"{url}&page={page}", timeout=20)
|
| 166 |
+
if resp.status_code != 200:
|
| 167 |
+
L(f" get_frames page {page}: status={resp.status_code}")
|
| 168 |
+
break
|
| 169 |
+
soup = BeautifulSoup(resp.content, "html.parser")
|
| 170 |
+
except Exception as e:
|
| 171 |
+
L(f" get_frames ERROR: {type(e).__name__}: {e}")
|
| 172 |
+
break
|
| 173 |
+
imgs = soup.find_all('img', class_='imageFade')
|
| 174 |
+
if not imgs:
|
| 175 |
+
if page == 1: L(f" No images found on first page!")
|
| 176 |
+
break
|
| 177 |
+
names.extend([s.split('/')[-1] for i in imgs if (s := i.get('src')) and s.split('/')[-1] not in names])
|
| 178 |
+
pager = soup.select_one('ul.pagination li:last-child a')
|
| 179 |
+
if not pager or pager.get('href') in ['#', None]: break
|
| 180 |
+
page += 1
|
| 181 |
+
L(f" Total frame names: {len(names)}")
|
| 182 |
+
return names
|
| 183 |
+
|
| 184 |
+
def download(url, folder, name, timeout=10, retries=3):
|
| 185 |
+
"""Download single image with retry - returns (success, status_code)."""
|
| 186 |
+
fp = os.path.join(folder, name)
|
| 187 |
+
if os.path.exists(fp): return True, 200
|
| 188 |
+
for attempt in range(retries):
|
| 189 |
+
try:
|
| 190 |
+
r = SESSION.get(url, stream=True, timeout=timeout)
|
| 191 |
+
if r.status_code == 200:
|
| 192 |
+
with open(fp, 'wb') as f:
|
| 193 |
+
for chunk in r.iter_content(16384):
|
| 194 |
+
if chunk: f.write(chunk)
|
| 195 |
+
return True, 200
|
| 196 |
+
if r.status_code == 429: # Rate limit - don't retry immediately
|
| 197 |
+
return False, 429
|
| 198 |
+
# Other errors - retry
|
| 199 |
+
except:
|
| 200 |
+
pass
|
| 201 |
+
if attempt < retries - 1:
|
| 202 |
+
time.sleep(1)
|
| 203 |
+
return False, None
|
| 204 |
+
|
| 205 |
+
def scrape(name, link, save_dir, max_imgs, progress=None, log_fn=None):
|
| 206 |
+
L = log_fn or print
|
| 207 |
+
url, folder = "https://fancaps.net" + link, os.path.join(save_dir, sanitize(name))
|
| 208 |
+
os.makedirs(folder, exist_ok=True)
|
| 209 |
+
section = 'movie' if '/movies/' in link else 'anime' if '/anime/' in link else 'tv'
|
| 210 |
+
L(f" [2/8] Scraping: {url}")
|
| 211 |
+
L(f" Section: {section}, max: {max_imgs}")
|
| 212 |
+
consecutive_429 = 0
|
| 213 |
+
max_429 = 3 # Abort after 3 consecutive 429s
|
| 214 |
+
|
| 215 |
+
if section == 'movie':
|
| 216 |
+
names = get_frame_names(url, log_fn=L)
|
| 217 |
+
L(f" Movie frames: {len(names)}")
|
| 218 |
+
sampled = random.sample(names, min(max_imgs, len(names))) if names else []
|
| 219 |
+
downloaded = 0
|
| 220 |
+
for i, n in enumerate(sampled):
|
| 221 |
+
if consecutive_429 >= max_429:
|
| 222 |
+
L(f" Aborting: {consecutive_429} consecutive 429s")
|
| 223 |
+
break
|
| 224 |
+
if i > 0: time.sleep(random.uniform(0.3, 0.8)) # Faster delay
|
| 225 |
+
try:
|
| 226 |
+
if progress and len(sampled) > 0: progress((i+1)/len(sampled), desc=f"Downloading {name[:20]}")
|
| 227 |
+
except: pass
|
| 228 |
+
success, status = download(f"https://cdni.fancaps.net/file/fancaps-{section}images/{n}", folder, n)
|
| 229 |
+
if success:
|
| 230 |
+
downloaded += 1
|
| 231 |
+
consecutive_429 = 0
|
| 232 |
+
elif status == 429:
|
| 233 |
+
consecutive_429 += 1
|
| 234 |
+
cooldown = 30 * consecutive_429
|
| 235 |
+
L(f" 429 rate limit ({consecutive_429}/{max_429}), cooling {cooldown}s...")
|
| 236 |
+
time.sleep(cooldown)
|
| 237 |
+
else:
|
| 238 |
+
consecutive_429 = 0
|
| 239 |
+
L(f" Downloaded: {downloaded}/{len(sampled)}")
|
| 240 |
+
else:
|
| 241 |
+
L(f" Fetching episodes...")
|
| 242 |
+
eps = get_episodes(url, log_fn=L)
|
| 243 |
+
L(f" Episodes: {len(eps)}")
|
| 244 |
+
total = 0
|
| 245 |
+
per_ep = max(1, max_imgs // len(eps)) if eps else max_imgs
|
| 246 |
+
for i, ep in enumerate(eps):
|
| 247 |
+
if total >= max_imgs or consecutive_429 >= max_429: break
|
| 248 |
+
names = get_frame_names(ep, log_fn=L)
|
| 249 |
+
if not names: continue
|
| 250 |
+
ep_dir = os.path.join(folder, f"Ep{i+1}")
|
| 251 |
+
os.makedirs(ep_dir, exist_ok=True)
|
| 252 |
+
sampled = random.sample(names, min(per_ep, len(names), max_imgs - total))
|
| 253 |
+
for j, n in enumerate(sampled):
|
| 254 |
+
if consecutive_429 >= max_429: break
|
| 255 |
+
if j > 0: time.sleep(random.uniform(0.3, 0.8)) # Faster delay
|
| 256 |
+
try:
|
| 257 |
+
if progress and max_imgs > 0: progress(total/max_imgs, desc=f"Ep{i+1}")
|
| 258 |
+
except: pass # Gradio progress can fail in some contexts
|
| 259 |
+
success, status = download(f"https://cdni.fancaps.net/file/fancaps-{section}images/{n}", ep_dir, n)
|
| 260 |
+
if success:
|
| 261 |
+
total += 1
|
| 262 |
+
consecutive_429 = 0
|
| 263 |
+
elif status == 429:
|
| 264 |
+
consecutive_429 += 1
|
| 265 |
+
cooldown = 30 * consecutive_429
|
| 266 |
+
L(f" 429 rate limit ({consecutive_429}/{max_429}), cooling {cooldown}s...")
|
| 267 |
+
time.sleep(cooldown)
|
| 268 |
+
else:
|
| 269 |
+
consecutive_429 = 0
|
| 270 |
+
L(f" Total downloaded: {total}")
|
| 271 |
+
|
| 272 |
+
# =============================================================================
|
| 273 |
+
# ML MODELS (cached)
|
| 274 |
+
# =============================================================================
|
| 275 |
+
_models = {}
|
| 276 |
+
|
| 277 |
+
def get_yolo():
|
| 278 |
+
if 'yolo' not in _models:
|
| 279 |
+
_models['yolo'] = torch.hub.load('ultralytics/yolov5', 'custom', path=str(YOLO_PATH), force_reload=False, verbose=False)
|
| 280 |
+
_models['yolo'].conf, _models['yolo'].iou = FACE_CONF, FACE_IOU
|
| 281 |
+
return _models['yolo']
|
| 282 |
+
|
| 283 |
+
def get_sim():
|
| 284 |
+
if 'sim' not in _models:
|
| 285 |
+
class SiameseNetwork(nn.Module):
|
| 286 |
+
def __init__(self):
|
| 287 |
+
super().__init__()
|
| 288 |
+
self.base_model = models.efficientnet_b0(weights=models.EfficientNet_B0_Weights.DEFAULT)
|
| 289 |
+
def forward(self, x):
|
| 290 |
+
return self.base_model(x) # 1000-class output (trained this way)
|
| 291 |
+
m = SiameseNetwork()
|
| 292 |
+
# Keep on CPU for consistent distance values across devices
|
| 293 |
+
m.load_state_dict(torch.load(str(SIM_PATH), map_location="cpu", weights_only=True))
|
| 294 |
+
m.eval()
|
| 295 |
+
_models['sim'] = m
|
| 296 |
+
return _models['sim']
|
| 297 |
+
|
| 298 |
+
def get_tagger():
|
| 299 |
+
if 'tag' not in _models:
|
| 300 |
+
mp, cp = huggingface_hub.hf_hub_download(WD_REPO, "model.onnx"), huggingface_hub.hf_hub_download(WD_REPO, "selected_tags.csv")
|
| 301 |
+
tags = [str(x).replace('_', ' ') for x in pd.read_csv(cp)['name'].tolist()]
|
| 302 |
+
sess = rt.InferenceSession(mp, providers=['CPUExecutionProvider'])
|
| 303 |
+
_models['tag'] = (sess, tags, sess.get_inputs()[0].shape[1])
|
| 304 |
+
return _models['tag']
|
| 305 |
+
|
| 306 |
+
# =============================================================================
|
| 307 |
+
# PROCESSING
|
| 308 |
+
# =============================================================================
|
| 309 |
+
def dedup(paths, thresh=0.98):
|
| 310 |
+
if not paths: return [], []
|
| 311 |
+
m = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1); m.fc = nn.Identity(); m.eval()
|
| 312 |
+
tf = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([.485,.456,.406],[.229,.224,.225])])
|
| 313 |
+
emb, valid = [], []
|
| 314 |
+
with torch.no_grad():
|
| 315 |
+
for i in range(0, len(paths), 32):
|
| 316 |
+
batch = [(tf(Image.open(p).convert('RGB')), p) for p in paths[i:i+32] if valid_img(p)]
|
| 317 |
+
if batch:
|
| 318 |
+
x = torch.stack([b[0] for b in batch])
|
| 319 |
+
emb.append(m(x).numpy()); valid.extend([b[1] for b in batch])
|
| 320 |
+
del m
|
| 321 |
+
if not emb: return [], []
|
| 322 |
+
emb = np.vstack(emb); emb /= np.linalg.norm(emb, axis=1, keepdims=True).clip(1e-8)
|
| 323 |
+
sim = emb @ emb.T; np.fill_diagonal(sim, 0)
|
| 324 |
+
keep, drop = [], set()
|
| 325 |
+
for i in range(len(valid)):
|
| 326 |
+
if i not in drop: keep.append(valid[i]); drop.update(j for j in np.where(sim[i] > thresh)[0] if j > i)
|
| 327 |
+
return keep, [valid[i] for i in drop]
|
| 328 |
+
|
| 329 |
+
def detect_faces(paths, out_dir):
|
| 330 |
+
yolo = get_yolo(); os.makedirs(out_dir, exist_ok=True); cnt = 0
|
| 331 |
+
for p in paths:
|
| 332 |
+
try:
|
| 333 |
+
img = Image.open(p).convert('RGB'); w, h = img.size
|
| 334 |
+
for j, det in enumerate(yolo(img, size=640).xyxy[0].cpu().numpy()):
|
| 335 |
+
x1, y1, x2, y2, conf, _ = det
|
| 336 |
+
bw, bh = x2-x1, y2-y1
|
| 337 |
+
x1, y1, x2, y2 = max(0, x1-bw*CROP_PAD), max(0, y1-bh*CROP_PAD), min(w, x2+bw*CROP_PAD), min(h, y2+bh*CROP_PAD)
|
| 338 |
+
if min(x2-x1, y2-y1) >= MIN_FACE:
|
| 339 |
+
img.crop((int(x1), int(y1), int(x2), int(y2))).save(os.path.join(out_dir, f"{Path(p).stem}-{j+1}-{conf:.2f}.jpg"), quality=95)
|
| 340 |
+
cnt += 1
|
| 341 |
+
except: pass
|
| 342 |
+
return cnt
|
| 343 |
+
|
| 344 |
+
def face_emb(paths):
|
| 345 |
+
if not paths: return np.array([]), []
|
| 346 |
+
m = get_sim() # Always on CPU for consistent distances
|
| 347 |
+
def pad(img):
|
| 348 |
+
t, w, h = FACE_SZ, img.size[0], img.size[1]; r = w/h
|
| 349 |
+
nw, nh = (t, int(t/r)) if r > 1 else (int(t*r), t)
|
| 350 |
+
img = img.resize((nw, nh), Image.BICUBIC)
|
| 351 |
+
out = Image.new('RGB', (t, t), (0,0,0)); out.paste(img, ((t-nw)//2, (t-nh)//2)); return out
|
| 352 |
+
tf = transforms.Compose([lambda x: pad(x.convert('RGB') if x.mode == 'RGBA' else x), transforms.ToTensor()])
|
| 353 |
+
emb, valid = [], []
|
| 354 |
+
with torch.no_grad():
|
| 355 |
+
for i in range(0, len(paths), BATCH_SZ):
|
| 356 |
+
batch = [(tf(Image.open(p)), p) for p in paths[i:i+BATCH_SZ] if valid_img(p)]
|
| 357 |
+
if batch:
|
| 358 |
+
x = torch.stack([b[0] for b in batch]) # CPU tensor
|
| 359 |
+
emb.append(m(x).numpy())
|
| 360 |
+
valid.extend([b[1] for b in batch])
|
| 361 |
+
return (np.vstack(emb), valid) if emb else (np.array([]), [])
|
| 362 |
+
|
| 363 |
+
def tag(path, act_tag="", char_tag=""):
|
| 364 |
+
sess, tags, sz = get_tagger()
|
| 365 |
+
img = Image.open(path).convert('RGB'); w, h = img.size
|
| 366 |
+
s = min(sz/w, sz/h); nw, nh = int(w*s), int(h*s)
|
| 367 |
+
pad = Image.new('RGB', (sz, sz), (255,255,255)); pad.paste(img.resize((nw, nh), Image.BICUBIC), ((sz-nw)//2, (sz-nh)//2))
|
| 368 |
+
probs = sess.run(None, {sess.get_inputs()[0].name: np.expand_dims(np.array(pad).astype(np.float32)[:,:,::-1], 0)})[0][0]
|
| 369 |
+
found = [tags[i] for i, p in enumerate(probs) if p > TAG_THRESH and tags[i] not in BLACKLIST]
|
| 370 |
+
# Prepend activation tag and character tag if provided
|
| 371 |
+
prefix = []
|
| 372 |
+
if act_tag: prefix.append(act_tag); found = [t for t in found if t != act_tag]
|
| 373 |
+
if char_tag: prefix.append(char_tag.replace("_", " ")); found = [t for t in found if t != char_tag.replace("_", " ")]
|
| 374 |
+
return prefix + found
|
| 375 |
+
|
| 376 |
+
# =============================================================================
|
| 377 |
+
# PIPELINE
|
| 378 |
+
# =============================================================================
|
| 379 |
+
def parse_direct_url(url):
|
| 380 |
+
"""Parse direct fancaps URL, extract show name and relative link. Returns (name, link) or (None, None)."""
|
| 381 |
+
# Match patterns: showimages.php?ID-Name, MovieImages.php?movieid=ID&name=Name, episodeimages.php?ID-Name
|
| 382 |
+
patterns = [
|
| 383 |
+
r'fancaps\.net/anime/showimages\.php\?(\d+)-([^&/]+)', # anime show
|
| 384 |
+
r'fancaps\.net/tv/showimages\.php\?(\d+)-([^&/]+)', # tv show
|
| 385 |
+
r'fancaps\.net/movies/MovieImages\.php\?.*?movieid=(\d+)', # movie
|
| 386 |
+
]
|
| 387 |
+
for pat in patterns:
|
| 388 |
+
m = re.search(pat, url)
|
| 389 |
+
if m:
|
| 390 |
+
if 'anime' in url: section = 'anime'
|
| 391 |
+
elif 'movies' in url: section = 'movies'
|
| 392 |
+
else: section = 'tv'
|
| 393 |
+
# Extract name from URL (replace underscores with spaces)
|
| 394 |
+
name = m.group(2).replace('_', ' ') if len(m.groups()) > 1 else f"Show_{m.group(1)}"
|
| 395 |
+
# Build relative link (what scrape() expects)
|
| 396 |
+
if section == 'movies':
|
| 397 |
+
link = f"/movies/MovieImages.php?movieid={m.group(1)}"
|
| 398 |
+
else:
|
| 399 |
+
link = f"/{section}/showimages.php?{m.group(1)}-{m.group(2) if len(m.groups()) > 1 else ''}"
|
| 400 |
+
return name, link
|
| 401 |
+
return None, None
|
| 402 |
+
|
| 403 |
+
def run(query, char, examples, max_img, thresh, act_tag, anime, movies, tv, progress=None, cli_mode=False):
|
| 404 |
+
log = []
|
| 405 |
+
def L(m): log.append(m); print(m)
|
| 406 |
+
def prog(val, desc=""):
|
| 407 |
+
if progress and not cli_mode: progress(val, desc=desc)
|
| 408 |
+
|
| 409 |
+
work = tempfile.mkdtemp(prefix="ds_")
|
| 410 |
+
dirs = {k: os.path.join(work, f"{i}_{k}") for i, k in enumerate(['scrapped','filtered','faces','ex_faces','similar','results'], 1)}
|
| 411 |
+
for d in dirs.values(): os.makedirs(d, exist_ok=True)
|
| 412 |
+
final_zip = None # Track ZIP for cleanup
|
| 413 |
+
|
| 414 |
+
try:
|
| 415 |
+
L(f"HTTP client: {HTTP_CLIENT}")
|
| 416 |
+
t0 = time.time()
|
| 417 |
+
|
| 418 |
+
# Check if query is a direct fancaps URL (bypasses search, works on HF Spaces)
|
| 419 |
+
if 'fancaps.net' in query and ('showimages.php' in query or 'MovieImages.php' in query):
|
| 420 |
+
L(f"[1/8] Direct URL mode")
|
| 421 |
+
name, link = parse_direct_url(query)
|
| 422 |
+
if not link:
|
| 423 |
+
return None, "\n".join(log) + "\n\nCouldn't parse URL!"
|
| 424 |
+
item = (name, link, 1)
|
| 425 |
+
L(f" Parsed: {name}")
|
| 426 |
+
else:
|
| 427 |
+
L(f"[1/8] Search: {query}")
|
| 428 |
+
prog(0.05, desc="Searching...")
|
| 429 |
+
res = search_fancaps(query, anime, movies, tv, log_fn=L)
|
| 430 |
+
if not res:
|
| 431 |
+
return None, "\n".join(log) + "\n\nSearch blocked! Use direct fancaps URL."
|
| 432 |
+
item = next((items[0] for items in res.values() if items), None)
|
| 433 |
+
if not item: return None, "No results!"
|
| 434 |
+
|
| 435 |
+
show_name = item[0]
|
| 436 |
+
if not char: char = sanitize(show_name)
|
| 437 |
+
t1 = time.time(); L(f" Found: {show_name} ({t1-t0:.0f}s)"); prog(0.1, desc="Downloading...")
|
| 438 |
+
|
| 439 |
+
# [2/8] Scrape
|
| 440 |
+
scrape(item[0], item[1], dirs['scrapped'], max_img, progress if not cli_mode else None, log_fn=L)
|
| 441 |
+
imgs = get_imgs(dirs['scrapped'])
|
| 442 |
+
t2 = time.time(); L(f"[2/8] Downloaded: {len(imgs)} ({t2-t1:.0f}s)")
|
| 443 |
+
if not imgs: return None, "No images downloaded!"
|
| 444 |
+
|
| 445 |
+
# [3/8] Dedup
|
| 446 |
+
prog(0.3, desc="Dedup...")
|
| 447 |
+
imgs = [p for p in imgs if valid_img(p)]
|
| 448 |
+
kept, rm = dedup(imgs)
|
| 449 |
+
for p in kept: shutil.copy(p, os.path.join(dirs['filtered'], os.path.basename(p)))
|
| 450 |
+
t3 = time.time(); L(f"[3/8] Dedup: {len(kept)} kept, -{len(rm)} ({t3-t2:.0f}s)")
|
| 451 |
+
|
| 452 |
+
# [4/8] Detect faces
|
| 453 |
+
prog(0.4, desc="Faces...")
|
| 454 |
+
n = detect_faces(get_imgs(dirs['filtered']), dirs['faces'])
|
| 455 |
+
t4 = time.time(); L(f"[4/8] Faces: {n} ({t4-t3:.0f}s)")
|
| 456 |
+
if n == 0: return None, "No faces detected!"
|
| 457 |
+
|
| 458 |
+
# [5/8] Process examples
|
| 459 |
+
prog(0.5, desc="Examples...")
|
| 460 |
+
ex_paths = [p for p in (examples or []) if p and os.path.exists(p)]
|
| 461 |
+
if not ex_paths: ex_paths = [p for p in EXAMPLES if os.path.exists(p)]
|
| 462 |
+
if not ex_paths: return None, "No example images!"
|
| 463 |
+
n_ex = detect_faces(ex_paths, dirs['ex_faces'])
|
| 464 |
+
t5 = time.time(); L(f"[5/8] Examples: {len(ex_paths)} imgs -> {n_ex} faces ({t5-t4:.0f}s)")
|
| 465 |
+
if n_ex == 0: return None, "No faces in examples!"
|
| 466 |
+
|
| 467 |
+
# [6/8] Match
|
| 468 |
+
prog(0.6, desc="Matching...")
|
| 469 |
+
f_emb, f_valid = face_emb(get_imgs(dirs['faces']))
|
| 470 |
+
e_emb, _ = face_emb(get_imgs(dirs['ex_faces']))
|
| 471 |
+
dists = pairwise_distances(f_emb, e_emb, metric='euclidean').min(axis=1)
|
| 472 |
+
similar_idx = np.where(dists < thresh)[0]
|
| 473 |
+
similar = [f_valid[i] for i in similar_idx]
|
| 474 |
+
similar_dists = dists[similar_idx]
|
| 475 |
+
t6 = time.time()
|
| 476 |
+
L(f"[6/8] Matches: {len(similar)} (thresh={thresh}) ({t6-t5:.0f}s)")
|
| 477 |
+
if len(similar_dists) > 0:
|
| 478 |
+
L(f" Distances: min={similar_dists.min():.1f}, max={similar_dists.max():.1f}, mean={similar_dists.mean():.1f}")
|
| 479 |
+
if not similar: return None, f"No matches! Try threshold > {thresh}"
|
| 480 |
+
|
| 481 |
+
# [7/8] Get originals
|
| 482 |
+
prog(0.7, desc="Collect...")
|
| 483 |
+
origs = set()
|
| 484 |
+
orig_to_dist = {}
|
| 485 |
+
for i, fp in enumerate(similar):
|
| 486 |
+
parts = os.path.basename(fp).rsplit('-', 2)
|
| 487 |
+
base = parts[0] if len(parts) >= 3 else Path(fp).stem
|
| 488 |
+
for ext in EXTS:
|
| 489 |
+
op = os.path.join(dirs['filtered'], base + ext)
|
| 490 |
+
if os.path.exists(op):
|
| 491 |
+
origs.add(op)
|
| 492 |
+
orig_to_dist[os.path.basename(op)] = similar_dists[i]
|
| 493 |
+
break
|
| 494 |
+
res_dir = os.path.join(work, f"results_{sanitize(char)}")
|
| 495 |
+
os.makedirs(res_dir, exist_ok=True)
|
| 496 |
+
for p in origs: shutil.copy(p, os.path.join(res_dir, os.path.basename(p)))
|
| 497 |
+
t7 = time.time(); L(f"[7/8] Collected: {len(origs)} ({t7-t6:.0f}s)")
|
| 498 |
+
|
| 499 |
+
# [8/8] Tag
|
| 500 |
+
prog(0.8, desc="Tagging...")
|
| 501 |
+
char_tag = char if char != sanitize(show_name) else ""
|
| 502 |
+
for p in get_imgs(res_dir):
|
| 503 |
+
tags = tag(p, act_tag, char_tag)
|
| 504 |
+
with open(os.path.splitext(p)[0] + ".txt", 'w') as f: f.write(", ".join(tags))
|
| 505 |
+
t8 = time.time(); L(f"[8/8] Tagged: {len(origs)} ({t8-t7:.0f}s)")
|
| 506 |
+
|
| 507 |
+
# Log each image with distance
|
| 508 |
+
L(f"\nResults (distance to ref):")
|
| 509 |
+
for name, d in sorted(orig_to_dist.items(), key=lambda x: x[1]):
|
| 510 |
+
L(f" {name}: {d:.1f}")
|
| 511 |
+
|
| 512 |
+
# Zip
|
| 513 |
+
prog(0.95, desc="Zipping...")
|
| 514 |
+
zp = os.path.join(work, f"{sanitize(char)}_dataset.zip")
|
| 515 |
+
with zipfile.ZipFile(zp, 'w', zipfile.ZIP_DEFLATED) as z:
|
| 516 |
+
for p in get_imgs(res_dir) + [os.path.splitext(p)[0]+".txt" for p in get_imgs(res_dir)]:
|
| 517 |
+
if os.path.exists(p): z.write(p, os.path.basename(p))
|
| 518 |
+
# Copy ZIP to persistent temp location (Gradio needs file to exist after return)
|
| 519 |
+
final_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip", prefix=f"{sanitize(char)}_").name
|
| 520 |
+
shutil.copy(zp, final_zip)
|
| 521 |
+
L(f"\nDone! {len(origs)} images, total {t8-t0:.0f}s"); prog(1.0, desc="Complete!")
|
| 522 |
+
return final_zip, "\n".join(log)
|
| 523 |
+
except Exception as e:
|
| 524 |
+
import traceback
|
| 525 |
+
return None, "\n".join(log) + f"\n\nERROR: {e}\n{traceback.format_exc()}"
|
| 526 |
+
finally:
|
| 527 |
+
# Clean up work directory (ZIP already copied out)
|
| 528 |
+
if os.path.exists(work):
|
| 529 |
+
shutil.rmtree(work, ignore_errors=True)
|
| 530 |
+
|
| 531 |
+
# =============================================================================
|
| 532 |
+
# UI
|
| 533 |
+
# =============================================================================
|
| 534 |
+
css = """
|
| 535 |
+
.gradio-container { padding-top: 10px !important; }
|
| 536 |
+
.compact-group { margin-bottom: 8px !important; }
|
| 537 |
+
"""
|
| 538 |
+
|
| 539 |
+
with gr.Blocks(title="SD Dataset Automaker: Fancaps → Face Crop (YOLO) → Similarity (Siamese) → WD Tagger → ZIP") as demo:
|
| 540 |
+
gr.Markdown("### SD Dataset Automaker: Fancaps → Face Crop (YOLO) → Similarity (Siamese) → WD Tagger → ZIP")
|
| 541 |
+
|
| 542 |
+
with gr.Row():
|
| 543 |
+
with gr.Column(scale=3):
|
| 544 |
+
# Compact input group
|
| 545 |
+
with gr.Group():
|
| 546 |
+
with gr.Row():
|
| 547 |
+
query = gr.Textbox(
|
| 548 |
+
label="Anime / Movie / Fancaps URL",
|
| 549 |
+
placeholder="'Cowboy Bebop' or paste URL",
|
| 550 |
+
scale=3
|
| 551 |
+
)
|
| 552 |
+
char = gr.Textbox(label="Character (optional, appends to tags)", placeholder="spike_spiegel", scale=2)
|
| 553 |
+
|
| 554 |
+
with gr.Row():
|
| 555 |
+
ref_imgs = gr.Gallery(
|
| 556 |
+
label="Reference Face Image(s)",
|
| 557 |
+
columns=4,
|
| 558 |
+
height=100,
|
| 559 |
+
interactive=True,
|
| 560 |
+
object_fit="scale-down",
|
| 561 |
+
scale=3,
|
| 562 |
+
)
|
| 563 |
+
run_btn = gr.Button("Generate Dataset", variant="primary", size="lg", scale=1)
|
| 564 |
+
|
| 565 |
+
# Hidden File input for MCP compatibility (Gallery $ref schema bug persists in Gradio 6.0.1)
|
| 566 |
+
ref_files = gr.File(
|
| 567 |
+
label="Reference Images (MCP)",
|
| 568 |
+
file_count="multiple",
|
| 569 |
+
file_types=["image"],
|
| 570 |
+
visible=False,
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
# gr.Examples + gr.Gallery works in Gradio 5.46.0+ (PR #11787)
|
| 574 |
+
gr.Examples(
|
| 575 |
+
examples=[
|
| 576 |
+
["https://fancaps.net/anime/showimages.php?3092-Cowboy_Bebop", "spike_spiegel", EXAMPLES],
|
| 577 |
+
],
|
| 578 |
+
inputs=[query, char, ref_imgs],
|
| 579 |
+
label="Example (click to load)",
|
| 580 |
+
)
|
| 581 |
+
|
| 582 |
+
# Advanced settings in accordion
|
| 583 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 584 |
+
with gr.Row():
|
| 585 |
+
max_img = gr.Slider(50, 500, 200, step=50, label="Max Downloads (frames to scrape)")
|
| 586 |
+
thresh = gr.Slider(20, 60, 32, step=1, label="Face Similarity (lower=stricter)")
|
| 587 |
+
with gr.Row():
|
| 588 |
+
act_tag = gr.Textbox(label="Trigger Word (prepends to captions)", placeholder="e.g. sks_style", scale=2)
|
| 589 |
+
anime_cb = gr.Checkbox(label="Anime", value=True, scale=1)
|
| 590 |
+
movies_cb = gr.Checkbox(label="Movies", scale=1)
|
| 591 |
+
tv_cb = gr.Checkbox(label="TV", scale=1)
|
| 592 |
+
|
| 593 |
+
with gr.Column(scale=1):
|
| 594 |
+
out_file = gr.File(label="Download ZIP", interactive=False)
|
| 595 |
+
with gr.Accordion("Log", open=True):
|
| 596 |
+
out_log = gr.Textbox(label="", lines=12, max_lines=50, show_label=False, autoscroll=False)
|
| 597 |
+
gr.Markdown("*CPU: ~5-10 min/run*")
|
| 598 |
+
|
| 599 |
+
def process(q, c, imgs, files, mi, th, at, an, mo, tv, prog=gr.Progress()):
|
| 600 |
+
if not q:
|
| 601 |
+
gr.Warning("Enter anime name or URL")
|
| 602 |
+
return None, ""
|
| 603 |
+
# Collect paths from Gallery (imgs) or File input (files)
|
| 604 |
+
paths = []
|
| 605 |
+
for item in (imgs or []):
|
| 606 |
+
p = item[0] if isinstance(item, (list, tuple)) else item
|
| 607 |
+
if p and os.path.exists(p): paths.append(p)
|
| 608 |
+
if not paths and files:
|
| 609 |
+
for f in (files if isinstance(files, list) else [files]):
|
| 610 |
+
fp = f.name if hasattr(f, 'name') else str(f)
|
| 611 |
+
if fp and os.path.exists(fp): paths.append(fp)
|
| 612 |
+
if not paths:
|
| 613 |
+
gr.Warning("Upload reference images or click 'Load Example'")
|
| 614 |
+
return None, ""
|
| 615 |
+
if 'fancaps.net' in q:
|
| 616 |
+
gr.Info("Direct URL detected")
|
| 617 |
+
else:
|
| 618 |
+
gr.Info(f"Searching: {q}")
|
| 619 |
+
zp, log = run(q, c, paths, mi, th, at, an, mo, tv, prog)
|
| 620 |
+
if zp:
|
| 621 |
+
gr.Info("Done!")
|
| 622 |
+
return zp, log
|
| 623 |
+
|
| 624 |
+
run_btn.click(process, [query, char, ref_imgs, ref_files, max_img, thresh, act_tag, anime_cb, movies_cb, tv_cb], [out_file, out_log])
|
| 625 |
+
|
| 626 |
+
def run_cli():
|
| 627 |
+
"""CLI mode with cloudscraper for Cloudflare bypass"""
|
| 628 |
+
# Use cloudscraper for CLI (bypasses Cloudflare on local/residential IPs)
|
| 629 |
+
init_session(use_cloudscraper=True)
|
| 630 |
+
|
| 631 |
+
parser = argparse.ArgumentParser(description="SD Dataset Automaker - Anime character dataset generator")
|
| 632 |
+
parser.add_argument("--title", "-t", required=True, help="Anime name or fancaps.net URL")
|
| 633 |
+
parser.add_argument("--image", "-i", nargs="+", required=True, help="Reference face images (1-5)")
|
| 634 |
+
parser.add_argument("--char", "-c", default="", help="Character name (optional, appends to tags)")
|
| 635 |
+
parser.add_argument("--max", "-m", type=int, default=200, help="Max frames to scrape (default: 200)")
|
| 636 |
+
parser.add_argument("--thresh", type=float, default=32.0, help="Face similarity threshold, lower=stricter (default: 32)")
|
| 637 |
+
parser.add_argument("--tag", default="", help="Trigger word to prepend to captions")
|
| 638 |
+
parser.add_argument("--anime", action="store_true", default=True, help="Search anime (default)")
|
| 639 |
+
parser.add_argument("--movies", action="store_true", help="Search movies")
|
| 640 |
+
parser.add_argument("--tv", action="store_true", help="Search TV")
|
| 641 |
+
parser.add_argument("--output", "-o", default=".", help="Output directory (default: current)")
|
| 642 |
+
args = parser.parse_args()
|
| 643 |
+
|
| 644 |
+
# Validate images
|
| 645 |
+
ref_imgs = [p for p in args.image if os.path.exists(p)]
|
| 646 |
+
if not ref_imgs:
|
| 647 |
+
print(f"ERROR: No valid reference images found: {args.image}")
|
| 648 |
+
sys.exit(1)
|
| 649 |
+
|
| 650 |
+
print(f"SD Dataset Automaker - CLI Mode")
|
| 651 |
+
print(f" Title: {args.title}")
|
| 652 |
+
print(f" Refs: {len(ref_imgs)} images")
|
| 653 |
+
print(f" Char: {args.char or '(auto from title)'}")
|
| 654 |
+
print()
|
| 655 |
+
|
| 656 |
+
zp, log = run(
|
| 657 |
+
query=args.title,
|
| 658 |
+
char=args.char,
|
| 659 |
+
examples=ref_imgs,
|
| 660 |
+
max_img=args.max,
|
| 661 |
+
thresh=args.thresh,
|
| 662 |
+
act_tag=args.tag,
|
| 663 |
+
anime=args.anime,
|
| 664 |
+
movies=args.movies,
|
| 665 |
+
tv=args.tv,
|
| 666 |
+
cli_mode=True
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
if zp:
|
| 670 |
+
# Copy to output dir
|
| 671 |
+
out_path = os.path.join(args.output, os.path.basename(zp))
|
| 672 |
+
shutil.copy(zp, out_path)
|
| 673 |
+
print(f"\nSaved: {out_path}")
|
| 674 |
+
else:
|
| 675 |
+
print(f"\nFailed!")
|
| 676 |
+
sys.exit(1)
|
| 677 |
+
|
| 678 |
+
if __name__ == "__main__":
|
| 679 |
+
# CLI mode if args provided, else Gradio UI
|
| 680 |
+
if len(sys.argv) > 1:
|
| 681 |
+
run_cli()
|
| 682 |
+
else:
|
| 683 |
+
# Gradio UI mode
|
| 684 |
+
allowed_dir = os.path.dirname(os.path.abspath(__file__))
|
| 685 |
+
demo.launch(
|
| 686 |
+
server_name="0.0.0.0",
|
| 687 |
+
server_port=7860,
|
| 688 |
+
mcp_server=True,
|
| 689 |
+
show_error=True,
|
| 690 |
+
allowed_paths=[allowed_dir],
|
| 691 |
+
css=css,
|
| 692 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|