Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
"""
|
| 2 |
-
app.py -
|
| 3 |
-
Key
|
| 4 |
-
-
|
| 5 |
-
-
|
| 6 |
-
-
|
| 7 |
"""
|
| 8 |
|
| 9 |
import re
|
|
@@ -13,15 +13,11 @@ import logging
|
|
| 13 |
from fastapi import FastAPI, Request
|
| 14 |
from fastapi.responses import StreamingResponse
|
| 15 |
|
| 16 |
-
# IMPORTANT: ensure ui.create_ui returns a gradio Blocks/Interface but DOES NOT call .launch()
|
| 17 |
from ui import create_ui
|
| 18 |
-
|
| 19 |
-
# Engines (they should be import-safe; if these modules load heavy models, adjust similarly)
|
| 20 |
from context_engine import get_smart_context
|
| 21 |
from cognitive_engine import get_time_context, get_thinking_strategy
|
| 22 |
from tools_engine import analyze_intent, perform_web_search
|
| 23 |
|
| 24 |
-
# Transformers model will be loaded on startup (not at import)
|
| 25 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 26 |
import torch
|
| 27 |
import gradio as gr
|
|
@@ -30,191 +26,205 @@ logger = logging.getLogger("nexari")
|
|
| 30 |
logging.basicConfig(level=logging.INFO)
|
| 31 |
|
| 32 |
MODEL_ID = "Piyush-boss/Nexari-Qwen-3B-Full"
|
| 33 |
-
|
| 34 |
-
# Globals to be set on startup
|
| 35 |
tokenizer = None
|
| 36 |
model = None
|
| 37 |
|
| 38 |
app = FastAPI()
|
| 39 |
|
| 40 |
-
# ------------------ HELPERS ------------------
|
| 41 |
def safe_replace_providers(text: str) -> str:
|
| 42 |
-
import re
|
| 43 |
return re.sub(r"\b(Anthropic|OpenAI|Alibaba)\b", "Piyush", text)
|
| 44 |
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
@app.on_event("startup")
|
| 47 |
async def startup_event():
|
| 48 |
global tokenizer, model
|
| 49 |
-
logger.info("Startup: loading
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
tokenizer, model = await asyncio.to_thread(sync_load)
|
| 68 |
-
logger.info("Model & tokenizer loaded successfully.")
|
| 69 |
-
except Exception as e:
|
| 70 |
-
logger.exception(f"Model loading failed: {e}")
|
| 71 |
-
# keep tokenizer/model as None — server continues to run for debugging
|
| 72 |
-
tokenizer, model = None, None
|
| 73 |
-
|
| 74 |
-
# start loader, but do not await too long (await it so startup waits for load attempt)
|
| 75 |
-
await _load_models()
|
| 76 |
-
logger.info("Startup: model load task completed (or failed).")
|
| 77 |
|
| 78 |
@app.on_event("shutdown")
|
| 79 |
async def shutdown_event():
|
| 80 |
-
logger.info("Shutdown:
|
| 81 |
-
# if model on GPU or other cleanup needed, do here
|
| 82 |
-
# e.g., torch.cuda.empty_cache() if you had GPU usage
|
| 83 |
|
| 84 |
-
# ------------------ STREAMING GENERATOR ------------------
|
| 85 |
async def generate_response_stream(messages, max_tokens=600, temperature=0.85):
|
| 86 |
-
"""
|
| 87 |
-
SSE streaming generator. Handles CancelledError gracefully.
|
| 88 |
-
"""
|
| 89 |
try:
|
| 90 |
-
if not
|
| 91 |
-
messages = [{"role":
|
| 92 |
-
last_user_msg = messages[-1].get("content",
|
| 93 |
|
| 94 |
-
#
|
| 95 |
yield f"data: {json.dumps({'status': 'Thinking...'})}\n\n"
|
| 96 |
-
await asyncio.sleep(0)
|
| 97 |
|
| 98 |
intent = analyze_intent(last_user_msg) or "general"
|
| 99 |
|
| 100 |
-
|
| 101 |
time_data = ""
|
| 102 |
vibe_data = ""
|
| 103 |
strategy_data = ""
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
if intent == "internet_search":
|
| 106 |
yield f"data: {json.dumps({'status': 'Searching the web...'})}\n\n"
|
| 107 |
await asyncio.sleep(0)
|
| 108 |
-
|
|
|
|
| 109 |
vibe_data = get_smart_context(last_user_msg)
|
| 110 |
-
strategy_data = get_thinking_strategy(is_complex=True)
|
| 111 |
|
| 112 |
elif intent == "coding_request":
|
| 113 |
yield f"data: {json.dumps({'status': 'Analyzing Logic...'})}\n\n"
|
| 114 |
vibe_data = get_smart_context(last_user_msg)
|
| 115 |
-
strategy_data = get_thinking_strategy(is_complex=True)
|
| 116 |
|
| 117 |
elif intent == "checking_time":
|
| 118 |
yield f"data: {json.dumps({'status': 'Checking Clock...'})}\n\n"
|
| 119 |
time_data = get_time_context()
|
| 120 |
vibe_data = get_smart_context(last_user_msg)
|
| 121 |
-
strategy_data = get_thinking_strategy(is_complex=False)
|
|
|
|
| 122 |
else:
|
| 123 |
vibe_data = get_smart_context(last_user_msg)
|
| 124 |
-
strategy_data = get_thinking_strategy(is_complex=False)
|
| 125 |
|
|
|
|
| 126 |
base_system_instruction = (
|
| 127 |
"### SYSTEM IDENTITY ###\n"
|
| 128 |
-
"You are
|
| 129 |
-
"
|
| 130 |
-
"
|
| 131 |
-
"
|
| 132 |
-
"
|
| 133 |
-
"
|
| 134 |
-
"
|
| 135 |
-
"5. Do NOT reveal chain-of-thought. Give a concise plan (1-2 lines) if needed, then final answer.\n"
|
| 136 |
)
|
| 137 |
|
| 138 |
-
final_system_prompt = f"{base_system_instruction}\n{vibe_data}\n{time_data}\n{
|
| 139 |
|
| 140 |
-
#
|
| 141 |
if messages[0].get("role") != "system":
|
| 142 |
-
messages.insert(0, {"role":
|
| 143 |
else:
|
| 144 |
messages[0]["content"] = final_system_prompt
|
| 145 |
|
| 146 |
-
# If
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
if tokenizer is None or model is None:
|
| 148 |
-
|
| 149 |
-
payload = json.dumps({"choices":
|
| 150 |
yield f"data: {payload}\n\n"
|
| 151 |
yield "data: [DONE]\n\n"
|
| 152 |
return
|
| 153 |
|
| 154 |
-
#
|
| 155 |
text_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 156 |
model_inputs = tokenizer([text_prompt], return_tensors="pt").to(model.device)
|
| 157 |
|
| 158 |
-
status_msg = 'Reading results...' if
|
| 159 |
yield f"data: {json.dumps({'status': status_msg})}\n\n"
|
| 160 |
|
| 161 |
-
#
|
| 162 |
def sync_generate():
|
| 163 |
-
|
| 164 |
**model_inputs,
|
| 165 |
max_new_tokens=max_tokens,
|
| 166 |
temperature=temperature,
|
| 167 |
do_sample=True,
|
| 168 |
top_k=50,
|
| 169 |
-
top_p=0.
|
| 170 |
-
repetition_penalty=1.
|
| 171 |
)
|
| 172 |
-
return generated_ids
|
| 173 |
-
|
| 174 |
generated_ids = await asyncio.to_thread(sync_generate)
|
| 175 |
|
| 176 |
-
|
| 177 |
-
new_tokens = generated_ids[0][
|
| 178 |
raw_response = tokenizer.decode(new_tokens, skip_special_tokens=True).strip()
|
| 179 |
|
| 180 |
# Cleaning & safety
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
if "
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
yield f"data: {final_payload}\n\n"
|
| 199 |
yield "data: [DONE]\n\n"
|
| 200 |
|
| 201 |
except asyncio.CancelledError:
|
| 202 |
-
|
| 203 |
-
logger.warning("generate_response_stream cancelled due to shutdown.")
|
| 204 |
return
|
| 205 |
except Exception as e:
|
| 206 |
-
logger.exception(f"
|
| 207 |
-
err_payload = json.dumps({"choices":
|
| 208 |
try:
|
| 209 |
yield f"data: {err_payload}\n\n"
|
| 210 |
yield "data: [DONE]\n\n"
|
| 211 |
except Exception:
|
| 212 |
return
|
| 213 |
|
| 214 |
-
# ------------------ FASTAPI ROUTES ------------------
|
| 215 |
@app.get("/api/status")
|
| 216 |
def status():
|
| 217 |
-
return {"status":
|
| 218 |
|
| 219 |
@app.post("/v1/chat/completions")
|
| 220 |
async def chat_completions(request: Request):
|
|
@@ -223,19 +233,17 @@ async def chat_completions(request: Request):
|
|
| 223 |
messages = data.get("messages", [])
|
| 224 |
return StreamingResponse(generate_response_stream(messages), media_type="text/event-stream")
|
| 225 |
except Exception as e:
|
| 226 |
-
logger.exception(f"chat_completions error: {e}")
|
| 227 |
return {"error": str(e)}
|
| 228 |
|
| 229 |
-
#
|
| 230 |
-
# Ensure create_ui returns a gr.Blocks (not launched).
|
| 231 |
try:
|
| 232 |
demo = create_ui(lambda messages: "Use API")
|
| 233 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 234 |
-
logger.info("
|
| 235 |
except Exception as e:
|
| 236 |
logger.exception(f"Failed to mount Gradio UI: {e}")
|
| 237 |
|
| 238 |
-
# ------------------ MAIN (only if running standalone) ------------------
|
| 239 |
if __name__ == "__main__":
|
| 240 |
import uvicorn
|
| 241 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 1 |
"""
|
| 2 |
+
app.py - Nexari Server (Web-tool + Detail-request fixes)
|
| 3 |
+
Key changes:
|
| 4 |
+
- When web search performed, pass structured WEB_DATA as an assistant message so the model MUST use it.
|
| 5 |
+
- Detect "detailed/line-by-line" user requests and increase max_tokens & enforce numbered output format.
|
| 6 |
+
- Minor safety & streaming robustness retained.
|
| 7 |
"""
|
| 8 |
|
| 9 |
import re
|
|
|
|
| 13 |
from fastapi import FastAPI, Request
|
| 14 |
from fastapi.responses import StreamingResponse
|
| 15 |
|
|
|
|
| 16 |
from ui import create_ui
|
|
|
|
|
|
|
| 17 |
from context_engine import get_smart_context
|
| 18 |
from cognitive_engine import get_time_context, get_thinking_strategy
|
| 19 |
from tools_engine import analyze_intent, perform_web_search
|
| 20 |
|
|
|
|
| 21 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 22 |
import torch
|
| 23 |
import gradio as gr
|
|
|
|
| 26 |
logging.basicConfig(level=logging.INFO)
|
| 27 |
|
| 28 |
MODEL_ID = "Piyush-boss/Nexari-Qwen-3B-Full"
|
|
|
|
|
|
|
| 29 |
tokenizer = None
|
| 30 |
model = None
|
| 31 |
|
| 32 |
app = FastAPI()
|
| 33 |
|
|
|
|
| 34 |
def safe_replace_providers(text: str) -> str:
|
|
|
|
| 35 |
return re.sub(r"\b(Anthropic|OpenAI|Alibaba)\b", "Piyush", text)
|
| 36 |
|
| 37 |
+
def is_detailed_request(text: str) -> bool:
|
| 38 |
+
kws = [
|
| 39 |
+
"line by line", "line-by-line", "line-by line", "step by step",
|
| 40 |
+
"step-by-step", "detailed", "in detail", "full", "full detail",
|
| 41 |
+
"expand", "elaborate", "more detail", "give me the full", "long answer"
|
| 42 |
+
]
|
| 43 |
+
t = (text or "").lower()
|
| 44 |
+
return any(k in t for k in kws)
|
| 45 |
+
|
| 46 |
@app.on_event("startup")
|
| 47 |
async def startup_event():
|
| 48 |
global tokenizer, model
|
| 49 |
+
logger.info("Startup: loading tokenizer/model in background thread...")
|
| 50 |
+
try:
|
| 51 |
+
def sync_load():
|
| 52 |
+
tok = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 53 |
+
mdl = AutoModelForCausalLM.from_pretrained(
|
| 54 |
+
MODEL_ID,
|
| 55 |
+
dtype=None,
|
| 56 |
+
device_map="cpu",
|
| 57 |
+
low_cpu_mem_usage=True,
|
| 58 |
+
trust_remote_code=True,
|
| 59 |
+
)
|
| 60 |
+
return tok, mdl
|
| 61 |
+
tokenizer, model = await asyncio.to_thread(sync_load)
|
| 62 |
+
logger.info("Model loaded successfully.")
|
| 63 |
+
except Exception as e:
|
| 64 |
+
logger.exception(f"Model loading failed: {e}")
|
| 65 |
+
tokenizer, model = None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
@app.on_event("shutdown")
|
| 68 |
async def shutdown_event():
|
| 69 |
+
logger.info("Shutdown: cleanup if necessary.")
|
|
|
|
|
|
|
| 70 |
|
|
|
|
| 71 |
async def generate_response_stream(messages, max_tokens=600, temperature=0.85):
|
|
|
|
|
|
|
|
|
|
| 72 |
try:
|
| 73 |
+
if not messages:
|
| 74 |
+
messages = [{"role":"user","content":""}]
|
| 75 |
+
last_user_msg = messages[-1].get("content","")
|
| 76 |
|
| 77 |
+
# initial thinking status
|
| 78 |
yield f"data: {json.dumps({'status': 'Thinking...'})}\n\n"
|
| 79 |
+
await asyncio.sleep(0)
|
| 80 |
|
| 81 |
intent = analyze_intent(last_user_msg) or "general"
|
| 82 |
|
| 83 |
+
tool_data_struct = None
|
| 84 |
time_data = ""
|
| 85 |
vibe_data = ""
|
| 86 |
strategy_data = ""
|
| 87 |
|
| 88 |
+
# detect if user explicitly asked for long/detailed format
|
| 89 |
+
want_detailed = is_detailed_request(last_user_msg)
|
| 90 |
+
if want_detailed:
|
| 91 |
+
# bump tokens to allow long/line-by-line answer
|
| 92 |
+
max_tokens = max(max_tokens, 1200)
|
| 93 |
+
temperature = min(temperature, 0.9) # keep somewhat controlled
|
| 94 |
+
|
| 95 |
+
# Route based on intent
|
| 96 |
if intent == "internet_search":
|
| 97 |
yield f"data: {json.dumps({'status': 'Searching the web...'})}\n\n"
|
| 98 |
await asyncio.sleep(0)
|
| 99 |
+
# perform_web_search now returns structured dict or empty string
|
| 100 |
+
tool_data_struct = perform_web_search(last_user_msg)
|
| 101 |
vibe_data = get_smart_context(last_user_msg)
|
| 102 |
+
strategy_data = get_thinking_strategy(is_complex=True, detail=want_detailed)
|
| 103 |
|
| 104 |
elif intent == "coding_request":
|
| 105 |
yield f"data: {json.dumps({'status': 'Analyzing Logic...'})}\n\n"
|
| 106 |
vibe_data = get_smart_context(last_user_msg)
|
| 107 |
+
strategy_data = get_thinking_strategy(is_complex=True, detail=want_detailed)
|
| 108 |
|
| 109 |
elif intent == "checking_time":
|
| 110 |
yield f"data: {json.dumps({'status': 'Checking Clock...'})}\n\n"
|
| 111 |
time_data = get_time_context()
|
| 112 |
vibe_data = get_smart_context(last_user_msg)
|
| 113 |
+
strategy_data = get_thinking_strategy(is_complex=False, detail=want_detailed)
|
| 114 |
+
|
| 115 |
else:
|
| 116 |
vibe_data = get_smart_context(last_user_msg)
|
| 117 |
+
strategy_data = get_thinking_strategy(is_complex=False, detail=want_detailed)
|
| 118 |
|
| 119 |
+
# Base system instruction with explicit web-data usage rule
|
| 120 |
base_system_instruction = (
|
| 121 |
"### SYSTEM IDENTITY ###\n"
|
| 122 |
+
"You are Nexari G1, an expressive and helpful AI created by Piyush.\n"
|
| 123 |
+
"### RULES ###\n"
|
| 124 |
+
"1) If WEB_DATA (search results) is provided, you MUST use it and prioritize it over model-internal knowledge. Cite sources (numbered) when possible.\n"
|
| 125 |
+
"2) Do NOT invent facts when WEB_DATA contradicts model memory.\n"
|
| 126 |
+
"3) If user asked for detailed/line-by-line output, produce a numbered step-by-step response; aim for thorough coverage.\n"
|
| 127 |
+
"4) Avoid chain-of-thought; produce a short '🧠 Plan:' (max 2 lines) only for complex tasks, then '💡 Answer:' with final content.\n"
|
| 128 |
+
"5) Keep emojis to 0-2 per message. After answering, offer a concise follow-up question.\n"
|
|
|
|
| 129 |
)
|
| 130 |
|
| 131 |
+
final_system_prompt = f"{base_system_instruction}\n{vibe_data}\n{time_data}\n{strategy_data}"
|
| 132 |
|
| 133 |
+
# ensure system message present
|
| 134 |
if messages[0].get("role") != "system":
|
| 135 |
+
messages.insert(0, {"role":"system","content": final_system_prompt})
|
| 136 |
else:
|
| 137 |
messages[0]["content"] = final_system_prompt
|
| 138 |
|
| 139 |
+
# If we have tool_data_struct (dict with items & sources), add as assistant message
|
| 140 |
+
if tool_data_struct:
|
| 141 |
+
# create a clear WEB_DATA assistant message that model must consume
|
| 142 |
+
web_block = "### WEB_DATA (from live search) ###\n"
|
| 143 |
+
# include numbered sources with short titles, snippets, and urls
|
| 144 |
+
items = tool_data_struct.get("results", [])
|
| 145 |
+
if items:
|
| 146 |
+
lines = []
|
| 147 |
+
for idx, it in enumerate(items, start=1):
|
| 148 |
+
title = it.get("title","(no title)").strip()
|
| 149 |
+
snippet = it.get("snippet","").replace("\n"," ").strip()
|
| 150 |
+
url = it.get("url","")
|
| 151 |
+
lines.append(f"{idx}. {title}\n {snippet}\n SOURCE: {url}")
|
| 152 |
+
web_block += "\n".join(lines)
|
| 153 |
+
web_block += "\n---\nINSTRUCTION: Use the WEB_DATA above to answer; cite relevant source numbers inline."
|
| 154 |
+
else:
|
| 155 |
+
web_block += "No results found."
|
| 156 |
+
|
| 157 |
+
# Insert the web block as an assistant message so model treats it as retrieved evidence
|
| 158 |
+
# Insert after system message (index 1)
|
| 159 |
+
messages.insert(1, {"role":"assistant","content": web_block})
|
| 160 |
+
|
| 161 |
+
# Model availability check
|
| 162 |
if tokenizer is None or model is None:
|
| 163 |
+
err = "Model is not loaded on server. Please check logs."
|
| 164 |
+
payload = json.dumps({"choices":[{"delta":{"content": err}}]})
|
| 165 |
yield f"data: {payload}\n\n"
|
| 166 |
yield "data: [DONE]\n\n"
|
| 167 |
return
|
| 168 |
|
| 169 |
+
# prepare prompt
|
| 170 |
text_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 171 |
model_inputs = tokenizer([text_prompt], return_tensors="pt").to(model.device)
|
| 172 |
|
| 173 |
+
status_msg = 'Reading results...' if tool_data_struct else 'Responding...'
|
| 174 |
yield f"data: {json.dumps({'status': status_msg})}\n\n"
|
| 175 |
|
| 176 |
+
# Generation in thread
|
| 177 |
def sync_generate():
|
| 178 |
+
return model.generate(
|
| 179 |
**model_inputs,
|
| 180 |
max_new_tokens=max_tokens,
|
| 181 |
temperature=temperature,
|
| 182 |
do_sample=True,
|
| 183 |
top_k=50,
|
| 184 |
+
top_p=0.92,
|
| 185 |
+
repetition_penalty=1.08
|
| 186 |
)
|
|
|
|
|
|
|
| 187 |
generated_ids = await asyncio.to_thread(sync_generate)
|
| 188 |
|
| 189 |
+
input_len = model_inputs.input_ids.shape[1]
|
| 190 |
+
new_tokens = generated_ids[0][input_len:]
|
| 191 |
raw_response = tokenizer.decode(new_tokens, skip_special_tokens=True).strip()
|
| 192 |
|
| 193 |
# Cleaning & safety
|
| 194 |
+
cleaned = safe_replace_providers(raw_response)
|
| 195 |
+
forbidden = ["I am a human","I have a physical body","I am alive"]
|
| 196 |
+
for fc in forbidden:
|
| 197 |
+
if fc.lower() in cleaned.lower():
|
| 198 |
+
cleaned = re.sub(re.escape(fc), "I am an AI — expressive and interactive.", cleaned, flags=re.IGNORECASE)
|
| 199 |
+
|
| 200 |
+
# If detailed requested, encourage numbered formatting if model didn't follow
|
| 201 |
+
if want_detailed:
|
| 202 |
+
# simple heuristic: if no numbered lines present, add an instruction prefix
|
| 203 |
+
if not re.search(r"^\s*\d+[\.\)]\s+", cleaned, re.M):
|
| 204 |
+
cleaned = "1) " + cleaned.replace("\n", "\n2) ") # best-effort reformat
|
| 205 |
+
|
| 206 |
+
# Format Answer tag
|
| 207 |
+
cleaned = cleaned.replace("💡 **Answer:**", "\n\n---\n💡 **Answer:**")
|
| 208 |
+
|
| 209 |
+
payload = json.dumps({"choices":[{"delta":{"content": cleaned}}]})
|
| 210 |
+
yield f"data: {payload}\n\n"
|
|
|
|
| 211 |
yield "data: [DONE]\n\n"
|
| 212 |
|
| 213 |
except asyncio.CancelledError:
|
| 214 |
+
logger.warning("Streaming cancelled (shutdown).")
|
|
|
|
| 215 |
return
|
| 216 |
except Exception as e:
|
| 217 |
+
logger.exception(f"Generator error: {e}")
|
| 218 |
+
err_payload = json.dumps({"choices":[{"delta":{"content": f"Internal error: {e}"}}]})
|
| 219 |
try:
|
| 220 |
yield f"data: {err_payload}\n\n"
|
| 221 |
yield "data: [DONE]\n\n"
|
| 222 |
except Exception:
|
| 223 |
return
|
| 224 |
|
|
|
|
| 225 |
@app.get("/api/status")
|
| 226 |
def status():
|
| 227 |
+
return {"status":"online","mode":"Smart Override Enabled"}
|
| 228 |
|
| 229 |
@app.post("/v1/chat/completions")
|
| 230 |
async def chat_completions(request: Request):
|
|
|
|
| 233 |
messages = data.get("messages", [])
|
| 234 |
return StreamingResponse(generate_response_stream(messages), media_type="text/event-stream")
|
| 235 |
except Exception as e:
|
| 236 |
+
logger.exception(f"chat_completions endpoint error: {e}")
|
| 237 |
return {"error": str(e)}
|
| 238 |
|
| 239 |
+
# Mount gradio if create_ui returns Blocks (must not call .launch())
|
|
|
|
| 240 |
try:
|
| 241 |
demo = create_ui(lambda messages: "Use API")
|
| 242 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 243 |
+
logger.info("Gradio mounted.")
|
| 244 |
except Exception as e:
|
| 245 |
logger.exception(f"Failed to mount Gradio UI: {e}")
|
| 246 |
|
|
|
|
| 247 |
if __name__ == "__main__":
|
| 248 |
import uvicorn
|
| 249 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|