Spaces:
Sleeping
Sleeping
PIYUSH BOSS
commited on
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Request
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
app = FastAPI()
|
| 7 |
+
|
| 8 |
+
# --- MODEL SETUP ---
|
| 9 |
+
MODEL_ID = "Piyush-boss/Nexari-Qwen-3B-Full"
|
| 10 |
+
|
| 11 |
+
print("🔄 Loading Nexari Model... (This takes time on CPU)")
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 14 |
+
MODEL_ID,
|
| 15 |
+
torch_dtype=torch.float32, # CPU ke liye float32 safe hai
|
| 16 |
+
device_map="cpu", # Force CPU
|
| 17 |
+
low_cpu_mem_usage=True
|
| 18 |
+
)
|
| 19 |
+
print("✅ Nexari Loaded Successfully!")
|
| 20 |
+
|
| 21 |
+
@app.get("/")
|
| 22 |
+
def home():
|
| 23 |
+
return {"status": "Nexari Server is Running!"}
|
| 24 |
+
|
| 25 |
+
@app.post("/v1/chat/completions")
|
| 26 |
+
async def chat_completions(request: Request):
|
| 27 |
+
data = await request.json()
|
| 28 |
+
messages = data.get("messages", [])
|
| 29 |
+
|
| 30 |
+
# 1. Prompt Format
|
| 31 |
+
prompt = ""
|
| 32 |
+
for msg in messages:
|
| 33 |
+
role = msg["role"]
|
| 34 |
+
content = msg["content"]
|
| 35 |
+
if role == "system":
|
| 36 |
+
prompt += f"<|im_start|>system\n{content}<|im_end|>\n"
|
| 37 |
+
elif role == "user":
|
| 38 |
+
prompt += f"<|im_start|>user\n{content}<|im_end|>\n"
|
| 39 |
+
elif role == "assistant":
|
| 40 |
+
prompt += f"<|im_start|>assistant\n{content}<|im_end|>\n"
|
| 41 |
+
|
| 42 |
+
prompt += "<|im_start|>assistant\n"
|
| 43 |
+
|
| 44 |
+
# 2. Tokenize & Generate
|
| 45 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 46 |
+
|
| 47 |
+
# CPU Generation (Thoda slow hoga, par chalega)
|
| 48 |
+
outputs = model.generate(
|
| 49 |
+
**inputs,
|
| 50 |
+
max_new_tokens=512,
|
| 51 |
+
temperature=0.7,
|
| 52 |
+
do_sample=True
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# 3. Decode
|
| 56 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 57 |
+
# Prompt hata kar sirf naya text nikalo
|
| 58 |
+
response_text = generated_text.replace(prompt, "").split("<|im_end|>")[0].strip()
|
| 59 |
+
# Fallback agar prompt replace theek se na ho
|
| 60 |
+
if "assistant" in response_text:
|
| 61 |
+
response_text = response_text.split("assistant")[-1].strip()
|
| 62 |
+
|
| 63 |
+
# 4. Return OpenAI JSON
|
| 64 |
+
return {
|
| 65 |
+
"id": "chatcmpl-nexari",
|
| 66 |
+
"object": "chat.completion",
|
| 67 |
+
"created": 1234567890,
|
| 68 |
+
"choices": [{
|
| 69 |
+
"index": 0,
|
| 70 |
+
"message": {
|
| 71 |
+
"role": "assistant",
|
| 72 |
+
"content": response_text
|
| 73 |
+
},
|
| 74 |
+
"finish_reason": "stop"
|
| 75 |
+
}]
|
| 76 |
+
}
|