Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
-
# app.py -
|
|
|
|
| 2 |
import re
|
| 3 |
import json
|
| 4 |
import asyncio
|
|
@@ -105,7 +106,7 @@ async def startup_event():
|
|
| 105 |
tokenizer, model = None, None
|
| 106 |
|
| 107 |
# -------------------------
|
| 108 |
-
# Prompt builder
|
| 109 |
# -------------------------
|
| 110 |
def _build_prompt_from_messages(messages: List[Dict[str, str]]) -> str:
|
| 111 |
parts = []
|
|
@@ -185,7 +186,9 @@ def extract_and_sanitize_plan(text: str, max_plan_chars: int = 240) -> (str, str
|
|
| 185 |
return None, text
|
| 186 |
|
| 187 |
# -------------------------
|
| 188 |
-
# Streaming generator with
|
|
|
|
|
|
|
| 189 |
# -------------------------
|
| 190 |
async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600, temperature=0.85):
|
| 191 |
try:
|
|
@@ -204,13 +207,18 @@ async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600
|
|
| 204 |
yield "data: [DONE]\n\n"
|
| 205 |
return
|
| 206 |
|
| 207 |
-
# Quick initial indicator
|
| 208 |
yield f"data: {json.dumps({'status': 'Thinking...'})}\n\n"
|
| 209 |
await asyncio.sleep(0)
|
| 210 |
|
| 211 |
intent = analyze_intent(last_user_msg) or "general"
|
| 212 |
|
| 213 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
try:
|
| 215 |
flow_context = analyze_flow(messages)
|
| 216 |
except Exception as e:
|
|
@@ -222,10 +230,7 @@ async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600
|
|
| 222 |
min_words = plan_req["min_words"]
|
| 223 |
strictness = plan_req["strictness"]
|
| 224 |
|
| 225 |
-
#
|
| 226 |
-
yield f"data: {json.dumps({'status': 'Reasoning (planner)...'})}\n\n"
|
| 227 |
-
await asyncio.sleep(0)
|
| 228 |
-
|
| 229 |
if strictness:
|
| 230 |
temperature = min(temperature + 0.05, 0.95)
|
| 231 |
max_tokens = max(max_tokens, min_words // 2 + 120)
|
|
@@ -298,16 +303,17 @@ async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600
|
|
| 298 |
except Exception:
|
| 299 |
text_prompt = _build_prompt_from_messages(messages)
|
| 300 |
|
| 301 |
-
# ---------- GENERATION STAGE
|
| 302 |
max_attempts = 2
|
| 303 |
attempts = 0
|
| 304 |
last_meta = {}
|
| 305 |
generated_text = ""
|
| 306 |
while attempts < max_attempts:
|
| 307 |
attempts += 1
|
| 308 |
-
#
|
| 309 |
-
yield f"data: {json.dumps({'status': f'Generating β LLM {attempts})...'})}\n\n"
|
| 310 |
-
|
|
|
|
| 311 |
|
| 312 |
model_inputs = tokenizer(text_prompt, return_tensors="pt", truncation=True, max_length=4096).to(next(model.parameters()).device)
|
| 313 |
|
|
@@ -363,7 +369,8 @@ async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600
|
|
| 363 |
text_prompt = _build_prompt_from_messages(messages)
|
| 364 |
except Exception:
|
| 365 |
text_prompt = _build_prompt_from_messages(messages)
|
| 366 |
-
|
|
|
|
| 367 |
continue
|
| 368 |
|
| 369 |
if not generated_text:
|
|
|
|
| 1 |
+
# app.py - FINAL: ensure "Reasoning (planner)..." shows during planning (before heavy analysis),
|
| 2 |
+
# then show "Generating β LLM (attempt N)..." only when invoking the LLM.
|
| 3 |
import re
|
| 4 |
import json
|
| 5 |
import asyncio
|
|
|
|
| 106 |
tokenizer, model = None, None
|
| 107 |
|
| 108 |
# -------------------------
|
| 109 |
+
# Prompt builder & utils
|
| 110 |
# -------------------------
|
| 111 |
def _build_prompt_from_messages(messages: List[Dict[str, str]]) -> str:
|
| 112 |
parts = []
|
|
|
|
| 186 |
return None, text
|
| 187 |
|
| 188 |
# -------------------------
|
| 189 |
+
# Streaming generator with corrected ordering:
|
| 190 |
+
# Emit "Reasoning (planner)..." first, THEN run planning analysis,
|
| 191 |
+
# then emit "Generating β LLM (attempt N)..." for model attempts.
|
| 192 |
# -------------------------
|
| 193 |
async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600, temperature=0.85):
|
| 194 |
try:
|
|
|
|
| 207 |
yield "data: [DONE]\n\n"
|
| 208 |
return
|
| 209 |
|
| 210 |
+
# Quick initial indicator to keep UI responsive
|
| 211 |
yield f"data: {json.dumps({'status': 'Thinking...'})}\n\n"
|
| 212 |
await asyncio.sleep(0)
|
| 213 |
|
| 214 |
intent = analyze_intent(last_user_msg) or "general"
|
| 215 |
|
| 216 |
+
# Emit Reasoning indicator BEFORE heavy planning so UI shows it during planning
|
| 217 |
+
yield f"data: {json.dumps({'status': 'Reasoning (planner)...'})}\n\n"
|
| 218 |
+
# small pause to allow UI to render the status before we start analysis
|
| 219 |
+
await asyncio.sleep(0.15)
|
| 220 |
+
|
| 221 |
+
# ---------- PLANNING WORK (now executed while UI shows Reasoning) ----------
|
| 222 |
try:
|
| 223 |
flow_context = analyze_flow(messages)
|
| 224 |
except Exception as e:
|
|
|
|
| 230 |
min_words = plan_req["min_words"]
|
| 231 |
strictness = plan_req["strictness"]
|
| 232 |
|
| 233 |
+
# adjust tokens/temperature if strict
|
|
|
|
|
|
|
|
|
|
| 234 |
if strictness:
|
| 235 |
temperature = min(temperature + 0.05, 0.95)
|
| 236 |
max_tokens = max(max_tokens, min_words // 2 + 120)
|
|
|
|
| 303 |
except Exception:
|
| 304 |
text_prompt = _build_prompt_from_messages(messages)
|
| 305 |
|
| 306 |
+
# ---------- GENERATION STAGE ----------
|
| 307 |
max_attempts = 2
|
| 308 |
attempts = 0
|
| 309 |
last_meta = {}
|
| 310 |
generated_text = ""
|
| 311 |
while attempts < max_attempts:
|
| 312 |
attempts += 1
|
| 313 |
+
# Emit explicit generating label (after planning completed)
|
| 314 |
+
yield f"data: {json.dumps({'status': f'Generating β LLM (attempt {attempts})...'})}\n\n"
|
| 315 |
+
# tiny sleep to let UI update
|
| 316 |
+
await asyncio.sleep(0.06)
|
| 317 |
|
| 318 |
model_inputs = tokenizer(text_prompt, return_tensors="pt", truncation=True, max_length=4096).to(next(model.parameters()).device)
|
| 319 |
|
|
|
|
| 369 |
text_prompt = _build_prompt_from_messages(messages)
|
| 370 |
except Exception:
|
| 371 |
text_prompt = _build_prompt_from_messages(messages)
|
| 372 |
+
# allow a short break so UI shows the attempted generate label
|
| 373 |
+
await asyncio.sleep(0.02)
|
| 374 |
continue
|
| 375 |
|
| 376 |
if not generated_text:
|