Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,4 @@
|
|
| 1 |
-
# app.py - UPDATED (
|
| 2 |
-
# Behavior: use behavior_model.route to fast-path; after fast attempt run quality checks;
|
| 3 |
-
# if quality low -> fallback to planning route automatically (one fallback only per request).
|
| 4 |
import re
|
| 5 |
import json
|
| 6 |
import asyncio
|
|
@@ -186,58 +184,19 @@ def extract_and_sanitize_plan(text: str, max_plan_chars: int = 240) -> (str, str
|
|
| 186 |
return plan_label, cleaned_body
|
| 187 |
return None, text
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
Returns (is_low_quality, debug_info)
|
| 200 |
-
Heuristics:
|
| 201 |
-
- If word count < min_words_hint => low quality
|
| 202 |
-
- If response starts with generic short filler phrases => low quality
|
| 203 |
-
- If too short (<6 words) => low quality
|
| 204 |
-
- If contains many placeholders like 'I don't know' or 'sorry' => low quality
|
| 205 |
-
"""
|
| 206 |
-
t = (text or "").strip()
|
| 207 |
-
wc = word_count(t)
|
| 208 |
-
lower = t.lower()
|
| 209 |
-
|
| 210 |
-
reasons = []
|
| 211 |
-
if wc < max(6, min_words_hint // 2):
|
| 212 |
-
reasons.append(f"word_count_too_small ({wc} < {max(6, min_words_hint // 2)})")
|
| 213 |
-
if wc < min_words_hint:
|
| 214 |
-
# not strict failure for very small min_words_hint (like 6), but flagged
|
| 215 |
-
reasons.append(f"below_min_hint ({wc} < {min_words_hint})")
|
| 216 |
-
for ph in _LOW_QUALITY_PHRASES:
|
| 217 |
-
if lower.startswith(ph):
|
| 218 |
-
reasons.append(f"starts_with_generic_phrase ({ph})")
|
| 219 |
-
break
|
| 220 |
-
# placeholder detection
|
| 221 |
-
placeholders = ["i don't know", "i'm not sure", "i do not know", "can't help", "unable to"]
|
| 222 |
-
for ph in placeholders:
|
| 223 |
-
if ph in lower:
|
| 224 |
-
reasons.append(f"contains_placeholder ({ph})")
|
| 225 |
-
break
|
| 226 |
-
|
| 227 |
-
# if many short sentences like "Okay. Sure." count as low quality
|
| 228 |
-
sent_count = len(re.findall(r"[.!?]+", t)) or 1
|
| 229 |
-
if wc < 12 and sent_count >= 2:
|
| 230 |
-
reasons.append("fragmented_short_sentences")
|
| 231 |
-
|
| 232 |
-
is_low = len(reasons) > 0
|
| 233 |
-
debug = {"word_count": wc, "min_words_hint": min_words_hint, "reasons": reasons}
|
| 234 |
-
return is_low, debug
|
| 235 |
|
| 236 |
# -------------------------
|
| 237 |
-
# Streaming generator with
|
| 238 |
-
# - Fast-path tries one attempt
|
| 239 |
-
# - If quality low -> fallback to planning route
|
| 240 |
-
# - Avoid infinite loops with fallback_once flag
|
| 241 |
# -------------------------
|
| 242 |
async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600, temperature=0.85):
|
| 243 |
try:
|
|
@@ -269,207 +228,46 @@ async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600
|
|
| 269 |
logger.exception("Flow analysis failed: %s", e)
|
| 270 |
flow_context = {}
|
| 271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
# Log route decision
|
| 273 |
route = flow_context.get("route", "planning")
|
| 274 |
-
complexity_score = flow_context.get("complexity_score",
|
| 275 |
-
logger.info("Flow route: %s (score=%s)", route, complexity_score)
|
| 276 |
-
|
| 277 |
-
# allow fallback once from direct -> planning
|
| 278 |
-
fallback_once = False
|
| 279 |
-
|
| 280 |
-
# Helper to run the planning route (reusable)
|
| 281 |
-
async def run_planning_route(messages_local, flow_context_local, last_user_msg_local, min_tokens_hint=None):
|
| 282 |
-
"""
|
| 283 |
-
Runs the full planning pipeline (same as previous planning branch).
|
| 284 |
-
Returns generated_text and meta dict.
|
| 285 |
-
"""
|
| 286 |
-
# Emit Reasoning indicator BEFORE heavy planning so UI shows it during planning
|
| 287 |
-
yield f"data: {json.dumps({'status': 'Reasoning (planner)...'})}\n\n"
|
| 288 |
-
await asyncio.sleep(0.12)
|
| 289 |
-
|
| 290 |
-
vibe_block = get_smart_context(last_user_msg_local)
|
| 291 |
-
plan_req = plan_response_requirements(messages_local, last_user_msg_local, flow_context_local, vibe_block)
|
| 292 |
-
min_words = plan_req["min_words"]
|
| 293 |
-
strictness = plan_req["strictness"]
|
| 294 |
-
|
| 295 |
-
# adjust tokens/temperature if strict
|
| 296 |
-
nonlocal temperature, max_tokens
|
| 297 |
-
if strictness:
|
| 298 |
-
temperature = min(temperature + 0.05, 0.95)
|
| 299 |
-
max_tokens = max(max_tokens, min_words // 2 + 120)
|
| 300 |
-
|
| 301 |
-
strategy_data = get_thinking_strategy(is_complex=(intent=="coding_request" or min_words>50), detail=(min_words>50), min_words_hint=min_words)
|
| 302 |
-
time_data = get_time_context()
|
| 303 |
-
|
| 304 |
-
base_system_instruction = (
|
| 305 |
-
"### SYSTEM IDENTITY ###\n"
|
| 306 |
-
"You are Nexari G1, an expressive and helpful AI created by Piyush.\n"
|
| 307 |
-
"### RULES ###\n"
|
| 308 |
-
"1) If WEB_DATA is provided, prioritize it and cite sources.\n"
|
| 309 |
-
"2) Avoid chain-of-thought exposure. If requested to provide a short 'Plan', keep it concise (max 2 lines) and label it '🧠 Plan:'.\n"
|
| 310 |
-
"3) Use natural phrasing; follow emoji & verbosity guidance below.\n"
|
| 311 |
-
)
|
| 312 |
-
|
| 313 |
-
flow_desc = ""
|
| 314 |
-
if flow_context_local:
|
| 315 |
-
label = flow_context_local.get("flow_label","unknown")
|
| 316 |
-
conf = round(float(flow_context_local.get("confidence", 0.0)), 2)
|
| 317 |
-
expl = flow_context_local.get("explanation", "")
|
| 318 |
-
flow_desc = f"\n[FLOW] Detected: {label} (confidence {conf}). {expl}\n"
|
| 319 |
-
|
| 320 |
-
final_system_prompt = f"{base_system_instruction}\n{flow_desc}\n{vibe_block}\n{time_data}\n{strategy_data}"
|
| 321 |
-
|
| 322 |
-
if messages_local and messages_local[0].get("role") == "system":
|
| 323 |
-
messages_local[0]["content"] = final_system_prompt
|
| 324 |
-
else:
|
| 325 |
-
messages_local.insert(0, {"role":"system","content": final_system_prompt})
|
| 326 |
-
|
| 327 |
-
# web search if needed
|
| 328 |
-
tool_data_struct = None
|
| 329 |
-
if intent == "internet_search":
|
| 330 |
-
yield f"data: {json.dumps({'status': 'Searching the web...'})}\n\n"
|
| 331 |
-
await asyncio.sleep(0)
|
| 332 |
-
try:
|
| 333 |
-
tool_data_struct = perform_web_search(last_user_msg_local)
|
| 334 |
-
except Exception as e:
|
| 335 |
-
logger.exception("Web search failed: %s", e)
|
| 336 |
-
tool_data_struct = {"query": last_user_msg_local, "results": []}
|
| 337 |
-
|
| 338 |
-
if tool_data_struct:
|
| 339 |
-
web_block = "### WEB_DATA (from live search) ###\n"
|
| 340 |
-
items = tool_data_struct.get("results", [])
|
| 341 |
-
if items:
|
| 342 |
-
lines = []
|
| 343 |
-
for idx, it in enumerate(items, start=1):
|
| 344 |
-
title = it.get("title","(no title)").strip()
|
| 345 |
-
snippet = it.get("snippet","").replace("\n"," ").strip()
|
| 346 |
-
url = it.get("url","")
|
| 347 |
-
lines.append(f"{idx}. {title}\n {snippet}\n SOURCE: {url}")
|
| 348 |
-
web_block += "\n".join(lines)
|
| 349 |
-
web_block += "\n---\nINSTRUCTION: Use the WEB_DATA above to answer; cite relevant source numbers inline."
|
| 350 |
-
else:
|
| 351 |
-
web_block += "No results found."
|
| 352 |
-
messages_local.insert(1, {"role":"assistant","content": web_block})
|
| 353 |
-
|
| 354 |
-
if tokenizer is None or model is None:
|
| 355 |
-
err = "Model not loaded. Check server logs."
|
| 356 |
-
payload = json.dumps({"choices":[{"delta":{"content": err}}]})
|
| 357 |
-
yield f"data: {payload}\n\n"
|
| 358 |
-
yield "data: [DONE]\n\n"
|
| 359 |
-
return None, {"error":"model_not_loaded"}
|
| 360 |
-
|
| 361 |
-
try:
|
| 362 |
-
if hasattr(tokenizer, "apply_chat_template"):
|
| 363 |
-
text_prompt_local = tokenizer.apply_chat_template(messages_local, tokenize=False, add_generation_prompt=True)
|
| 364 |
-
else:
|
| 365 |
-
text_prompt_local = _build_prompt_from_messages(messages_local)
|
| 366 |
-
except Exception:
|
| 367 |
-
text_prompt_local = _build_prompt_from_messages(messages_local)
|
| 368 |
-
|
| 369 |
-
# ---------- GENERATION STAGE ----------
|
| 370 |
-
max_attempts_local = 2
|
| 371 |
-
attempts_local = 0
|
| 372 |
-
last_meta_local = {}
|
| 373 |
-
generated_text_local = ""
|
| 374 |
-
cleaned_local = ""
|
| 375 |
-
while attempts_local < max_attempts_local:
|
| 376 |
-
attempts_local += 1
|
| 377 |
-
# Emit explicit generating label (after planning completed)
|
| 378 |
-
yield f"data: {json.dumps({'status': f'Generating LLM ({attempts_local})...'})}\n\n"
|
| 379 |
-
await asyncio.sleep(0.06)
|
| 380 |
-
|
| 381 |
-
model_inputs_local = tokenizer(text_prompt_local, return_tensors="pt", truncation=True, max_length=4096).to(next(model.parameters()).device)
|
| 382 |
-
|
| 383 |
-
def sync_generate_local():
|
| 384 |
-
return model.generate(
|
| 385 |
-
**model_inputs_local,
|
| 386 |
-
max_new_tokens=max_tokens,
|
| 387 |
-
temperature=temperature,
|
| 388 |
-
do_sample=True,
|
| 389 |
-
top_k=50,
|
| 390 |
-
top_p=0.92,
|
| 391 |
-
repetition_penalty=1.08
|
| 392 |
-
)
|
| 393 |
-
try:
|
| 394 |
-
generated_ids_local = await asyncio.to_thread(sync_generate_local)
|
| 395 |
-
except RuntimeError as e:
|
| 396 |
-
logger.exception("Generation failed (possible OOM): %s", e)
|
| 397 |
-
err_payload = json.dumps({"choices":[{"delta":{"content": "Model generation failed due to resource limits."}}]})
|
| 398 |
-
yield f"data: {err_payload}\n\n"
|
| 399 |
-
yield "data: [DONE]\n\n"
|
| 400 |
-
return None, {"error":"generation_failed"}
|
| 401 |
-
|
| 402 |
-
input_len_local = model_inputs_local["input_ids"].shape[1]
|
| 403 |
-
new_tokens_local = generated_ids_local[0][input_len_local:]
|
| 404 |
-
raw_response_local = tokenizer.decode(new_tokens_local, skip_special_tokens=True).strip()
|
| 405 |
-
cleaned_local = safe_replace_providers(raw_response_local)
|
| 406 |
-
|
| 407 |
-
forbidden = ["I am a human","I have a physical body","I am alive"]
|
| 408 |
-
for fc in forbidden:
|
| 409 |
-
if fc.lower() in cleaned_local.lower():
|
| 410 |
-
cleaned_local = re.sub(re.escape(fc), "I am an AI — expressive and interactive.", cleaned_local, flags=re.IGNORECASE)
|
| 411 |
-
|
| 412 |
-
plan_label_local, cleaned_body_local = extract_and_sanitize_plan(cleaned_local, max_plan_chars=240)
|
| 413 |
-
wc_local = word_count(cleaned_body_local)
|
| 414 |
-
last_meta_local = {"attempt": attempts_local, "word_count": wc_local, "raw_len": len(cleaned_body_local)}
|
| 415 |
-
|
| 416 |
-
if wc_local >= min_words or attempts_local >= max_attempts_local or plan_req["strictness"] == 0:
|
| 417 |
-
generated_text_local = cleaned_body_local
|
| 418 |
-
if plan_label_local:
|
| 419 |
-
generated_text_local = plan_label_local + "\n\n" + generated_text_local
|
| 420 |
-
break
|
| 421 |
-
else:
|
| 422 |
-
expand_note_local = f"\n\nEXPAND: The user's request needs ~{min_words} words. Expand previous answer (concise style) and avoid chain-of-thought."
|
| 423 |
-
if messages_local and messages_local[0].get("role") == "system":
|
| 424 |
-
messages_local[0]["content"] = messages_local[0]["content"] + "\n" + expand_note_local
|
| 425 |
-
else:
|
| 426 |
-
messages_local.insert(0, {"role":"system","content": expand_note_local})
|
| 427 |
-
temperature = min(temperature + 0.07, 0.98)
|
| 428 |
-
try:
|
| 429 |
-
if hasattr(tokenizer, "apply_chat_template"):
|
| 430 |
-
text_prompt_local = tokenizer.apply_chat_template(messages_local, tokenize=False, add_generation_prompt=True)
|
| 431 |
-
else:
|
| 432 |
-
text_prompt_local = _build_prompt_from_messages(messages_local)
|
| 433 |
-
except Exception:
|
| 434 |
-
text_prompt_local = _build_prompt_from_messages(messages_local)
|
| 435 |
-
await asyncio.sleep(0.02)
|
| 436 |
-
continue
|
| 437 |
|
| 438 |
-
|
| 439 |
-
plan_label_local, cleaned_body_local = extract_and_sanitize_plan(cleaned_local, max_plan_chars=240)
|
| 440 |
-
generated_text_local = (plan_label_local + "\n\n" if plan_label_local else "") + (cleaned_body_local or cleaned_local)
|
| 441 |
-
|
| 442 |
-
generated_text_local = re.sub(r"\bPlan\s*:\s*$", "", generated_text_local, flags=re.IGNORECASE).strip()
|
| 443 |
-
generated_text_local = generated_text_local.replace("I can help with that.", "I can help with that — let me explain. 🙂")
|
| 444 |
-
|
| 445 |
-
meta_local = {"generation_attempts": attempts_local, "last_attempt_meta": last_meta_local, "route": "planning", "complexity_score": flow_context_local.get("complexity_score")}
|
| 446 |
-
return generated_text_local, meta_local
|
| 447 |
-
|
| 448 |
-
# If direct route -> take fast-path (skip heavy planning UI status) but perform quality check
|
| 449 |
if route == "direct":
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
# Build a compact system prompt to keep responses concise
|
| 453 |
base_system_instruction = (
|
| 454 |
"You are Nexari G1, an expressive and helpful AI created by Piyush.\n"
|
| 455 |
-
"
|
| 456 |
-
"
|
| 457 |
)
|
| 458 |
-
|
| 459 |
-
# Minimal strategy/time insertion to avoid heavy planning
|
| 460 |
time_data = get_time_context()
|
| 461 |
-
#
|
| 462 |
-
strategy_data = get_thinking_strategy(is_complex=False, detail=False, min_words_hint=
|
| 463 |
|
| 464 |
-
final_system_prompt = f"{base_system_instruction}\n{time_data}\n{strategy_data}"
|
| 465 |
-
# ensure system message is present
|
| 466 |
if messages and messages[0].get("role") == "system":
|
| 467 |
messages[0]["content"] = final_system_prompt
|
| 468 |
else:
|
| 469 |
messages.insert(0, {"role":"system","content": final_system_prompt})
|
| 470 |
|
| 471 |
-
#
|
| 472 |
-
max_attempts = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
tool_data_struct = None
|
| 474 |
if intent == "internet_search":
|
| 475 |
yield f"data: {json.dumps({'status': 'Searching the web...'})}\n\n"
|
|
@@ -496,7 +294,6 @@ async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600
|
|
| 496 |
web_block += "No results found."
|
| 497 |
messages.insert(1, {"role":"assistant","content": web_block})
|
| 498 |
|
| 499 |
-
# Proceed to generation stage (fast path)
|
| 500 |
if tokenizer is None or model is None:
|
| 501 |
err = "Model not loaded. Check server logs."
|
| 502 |
payload = json.dumps({"choices":[{"delta":{"content": err}}]})
|
|
@@ -504,6 +301,7 @@ async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600
|
|
| 504 |
yield "data: [DONE]\n\n"
|
| 505 |
return
|
| 506 |
|
|
|
|
| 507 |
try:
|
| 508 |
if hasattr(tokenizer, "apply_chat_template"):
|
| 509 |
text_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
@@ -515,11 +313,11 @@ async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600
|
|
| 515 |
attempts = 0
|
| 516 |
generated_text = ""
|
| 517 |
last_meta = {}
|
| 518 |
-
cleaned = ""
|
| 519 |
while attempts < max_attempts:
|
| 520 |
attempts += 1
|
| 521 |
-
yield f"data: {json.dumps({'status': f'Generating LLM (
|
| 522 |
await asyncio.sleep(0.04)
|
|
|
|
| 523 |
model_inputs = tokenizer(text_prompt, return_tensors="pt", truncation=True, max_length=4096).to(next(model.parameters()).device)
|
| 524 |
|
| 525 |
def sync_generate():
|
|
@@ -554,132 +352,58 @@ async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600
|
|
| 554 |
plan_label, cleaned_body = extract_and_sanitize_plan(cleaned, max_plan_chars=240)
|
| 555 |
wc = word_count(cleaned_body)
|
| 556 |
last_meta = {"attempt": attempts, "word_count": wc, "raw_len": len(cleaned_body)}
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
logger.info("Fast-path quality check: low=%s debug=%s", is_low_quality, debug_info)
|
| 568 |
-
|
| 569 |
-
if not is_low_quality:
|
| 570 |
-
payload = json.dumps({
|
| 571 |
-
"choices":[{"delta":{"content": generated_text}}],
|
| 572 |
-
"generation_attempts": attempts,
|
| 573 |
-
"last_attempt_meta": last_meta,
|
| 574 |
-
"route": "direct",
|
| 575 |
-
"complexity_score": complexity_score,
|
| 576 |
-
"quality_debug": debug_info
|
| 577 |
-
})
|
| 578 |
-
yield f"data: {payload}\n\n"
|
| 579 |
-
yield "data: [DONE]\n\n"
|
| 580 |
-
return
|
| 581 |
-
else:
|
| 582 |
-
# fallback to planning route once
|
| 583 |
-
fallback_once = True
|
| 584 |
-
yield f"data: {json.dumps({'status': 'Fast result low-quality; falling back to planner...'})}\n\n"
|
| 585 |
-
await asyncio.sleep(0.05)
|
| 586 |
-
# prepare a new messages copy to avoid polluting original (remove prior system if present)
|
| 587 |
-
messages_for_planning = [m.copy() for m in messages if m.get("role") != "system"]
|
| 588 |
-
# re-insert the user's last message and preserved assistant web block if any
|
| 589 |
-
# Insert original earlier context (we'll reconstruct system prompt in planning function)
|
| 590 |
-
# Note: flow_context remains the same
|
| 591 |
-
# Call planning route generator
|
| 592 |
-
planning_gen = run_planning_route(messages_for_planning, flow_context, last_user_msg)
|
| 593 |
-
# run the async generator and return its results
|
| 594 |
-
# planning_gen is an async generator; iterate and yield any interim SSE from it
|
| 595 |
-
planning_result_text = None
|
| 596 |
-
planning_result_meta = None
|
| 597 |
-
async for item in planning_gen:
|
| 598 |
-
# item can be SSE strings from run_planning_route; yield them through
|
| 599 |
-
yield item
|
| 600 |
-
# run_planning_route returns via its final return - but since it's a generator
|
| 601 |
-
# we arranged it to yield statuses and then return result via yielded payload below.
|
| 602 |
-
# To keep implementation simple, re-run a synchronous planning helper to get final result:
|
| 603 |
-
generated_text_planning, meta_planning = await _run_planning_sync(messages_for_planning, flow_context, last_user_msg)
|
| 604 |
-
if generated_text_planning is None:
|
| 605 |
-
# planning failed; fallback to fast text (even if low quality)
|
| 606 |
-
payload = json.dumps({
|
| 607 |
-
"choices":[{"delta":{"content": generated_text}}],
|
| 608 |
-
"generation_attempts": attempts,
|
| 609 |
-
"last_attempt_meta": last_meta,
|
| 610 |
-
"route": "direct_fallback_failed",
|
| 611 |
-
"complexity_score": complexity_score,
|
| 612 |
-
"quality_debug": debug_info
|
| 613 |
-
})
|
| 614 |
-
yield f"data: {payload}\n\n"
|
| 615 |
-
yield "data: [DONE]\n\n"
|
| 616 |
-
return
|
| 617 |
else:
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
"
|
| 622 |
-
|
| 623 |
-
"
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 629 |
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
|
|
|
|
|
|
| 636 |
yield "data: [DONE]\n\n"
|
| 637 |
return
|
| 638 |
-
payload = json.dumps({
|
| 639 |
-
"choices":[{"delta":{"content": planning_result_text}}],
|
| 640 |
-
"generation_attempts": planning_meta.get("generation_attempts"),
|
| 641 |
-
"last_attempt_meta": planning_meta.get("last_attempt_meta"),
|
| 642 |
-
"route": "planning",
|
| 643 |
-
"complexity_score": complexity_score
|
| 644 |
-
})
|
| 645 |
-
yield f"data: {payload}\n\n"
|
| 646 |
-
yield "data: [DONE]\n\n"
|
| 647 |
-
return
|
| 648 |
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
except Exception as e:
|
| 653 |
-
logger.exception(f"Generator error: {e}")
|
| 654 |
-
err_payload = json.dumps({"choices":[{"delta":{"content": f"Internal error: {e}"}}]})
|
| 655 |
-
try:
|
| 656 |
-
yield f"data: {err_payload}\n\n"
|
| 657 |
-
yield "data: [DONE]\n\n"
|
| 658 |
-
except Exception:
|
| 659 |
-
return
|
| 660 |
|
| 661 |
-
#
|
| 662 |
-
# Synchronous planning wrapper used by the async flow to avoid duplicating code.
|
| 663 |
-
# We keep it as an async function that executes the planning generation synchronously
|
| 664 |
-
# to return final text+meta for simplified control flow.
|
| 665 |
-
# -------------------------
|
| 666 |
-
async def _run_planning_sync(messages_local, flow_context_local, last_user_msg_local):
|
| 667 |
-
"""
|
| 668 |
-
Runs the planning generator synchronously and returns (generated_text, meta_dict)
|
| 669 |
-
This re-uses the planning logic but in a simpler callable form (non-streaming).
|
| 670 |
-
"""
|
| 671 |
-
try:
|
| 672 |
-
vibe_block = get_smart_context(last_user_msg_local)
|
| 673 |
-
plan_req = plan_response_requirements(messages_local, last_user_msg_local, flow_context_local, vibe_block)
|
| 674 |
min_words = plan_req["min_words"]
|
| 675 |
strictness = plan_req["strictness"]
|
| 676 |
|
| 677 |
-
# adjust tokens/temperature if strict
|
| 678 |
-
temp_local = temperature
|
| 679 |
-
max_tok_local = max_tokens
|
| 680 |
if strictness:
|
| 681 |
-
|
| 682 |
-
|
| 683 |
|
| 684 |
strategy_data = get_thinking_strategy(is_complex=(intent=="coding_request" or min_words>50), detail=(min_words>50), min_words_hint=min_words)
|
| 685 |
time_data = get_time_context()
|
|
@@ -694,27 +418,29 @@ async def _run_planning_sync(messages_local, flow_context_local, last_user_msg_l
|
|
| 694 |
)
|
| 695 |
|
| 696 |
flow_desc = ""
|
| 697 |
-
if
|
| 698 |
-
label =
|
| 699 |
-
conf = round(float(
|
| 700 |
-
expl =
|
| 701 |
flow_desc = f"\n[FLOW] Detected: {label} (confidence {conf}). {expl}\n"
|
| 702 |
|
| 703 |
final_system_prompt = f"{base_system_instruction}\n{flow_desc}\n{vibe_block}\n{time_data}\n{strategy_data}"
|
| 704 |
|
| 705 |
-
if
|
| 706 |
-
|
| 707 |
else:
|
| 708 |
-
|
| 709 |
|
| 710 |
# web search if needed
|
| 711 |
tool_data_struct = None
|
| 712 |
if intent == "internet_search":
|
|
|
|
|
|
|
| 713 |
try:
|
| 714 |
-
tool_data_struct = perform_web_search(
|
| 715 |
except Exception as e:
|
| 716 |
logger.exception("Web search failed: %s", e)
|
| 717 |
-
tool_data_struct = {"query":
|
| 718 |
|
| 719 |
if tool_data_struct:
|
| 720 |
web_block = "### WEB_DATA (from live search) ###\n"
|
|
@@ -730,94 +456,119 @@ async def _run_planning_sync(messages_local, flow_context_local, last_user_msg_l
|
|
| 730 |
web_block += "\n---\nINSTRUCTION: Use the WEB_DATA above to answer; cite relevant source numbers inline."
|
| 731 |
else:
|
| 732 |
web_block += "No results found."
|
| 733 |
-
|
| 734 |
|
| 735 |
if tokenizer is None or model is None:
|
| 736 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 737 |
|
| 738 |
try:
|
| 739 |
if hasattr(tokenizer, "apply_chat_template"):
|
| 740 |
-
|
| 741 |
else:
|
| 742 |
-
|
| 743 |
except Exception:
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
#
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
|
|
|
|
|
|
| 757 |
return model.generate(
|
| 758 |
-
**
|
| 759 |
-
max_new_tokens=
|
| 760 |
-
temperature=
|
| 761 |
do_sample=True,
|
| 762 |
top_k=50,
|
| 763 |
top_p=0.92,
|
| 764 |
repetition_penalty=1.08
|
| 765 |
)
|
| 766 |
try:
|
| 767 |
-
|
| 768 |
except RuntimeError as e:
|
| 769 |
logger.exception("Generation failed (possible OOM): %s", e)
|
| 770 |
-
|
|
|
|
|
|
|
|
|
|
| 771 |
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
|
| 777 |
forbidden = ["I am a human","I have a physical body","I am alive"]
|
| 778 |
for fc in forbidden:
|
| 779 |
-
if fc.lower() in
|
| 780 |
-
|
| 781 |
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
|
| 786 |
-
if
|
| 787 |
-
|
| 788 |
-
if
|
| 789 |
-
|
| 790 |
break
|
| 791 |
else:
|
| 792 |
-
|
| 793 |
-
if
|
| 794 |
-
|
| 795 |
else:
|
| 796 |
-
|
| 797 |
-
|
| 798 |
try:
|
| 799 |
if hasattr(tokenizer, "apply_chat_template"):
|
| 800 |
-
|
| 801 |
else:
|
| 802 |
-
|
| 803 |
except Exception:
|
| 804 |
-
|
| 805 |
await asyncio.sleep(0.02)
|
| 806 |
continue
|
| 807 |
|
| 808 |
-
if not
|
| 809 |
-
|
| 810 |
-
|
| 811 |
|
| 812 |
-
|
| 813 |
-
|
| 814 |
|
| 815 |
-
|
| 816 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 817 |
|
|
|
|
|
|
|
|
|
|
| 818 |
except Exception as e:
|
| 819 |
-
logger.exception("
|
| 820 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 821 |
|
| 822 |
# -------------------------
|
| 823 |
# Endpoints
|
|
@@ -864,4 +615,4 @@ except Exception as e:
|
|
| 864 |
|
| 865 |
if __name__ == "__main__":
|
| 866 |
import uvicorn
|
| 867 |
-
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))
|
|
|
|
| 1 |
+
# app.py - UPDATED (adaptive direct-route for quality + planning-route unchanged)
|
|
|
|
|
|
|
| 2 |
import re
|
| 3 |
import json
|
| 4 |
import asyncio
|
|
|
|
| 184 |
return plan_label, cleaned_body
|
| 185 |
return None, text
|
| 186 |
|
| 187 |
+
def _is_low_quality(reply: str) -> bool:
|
| 188 |
+
if not reply or not reply.strip():
|
| 189 |
+
return True
|
| 190 |
+
low_phrases = ["i can help with that", "i'm here to help", "let me know", "i don't have"]
|
| 191 |
+
reply_l = reply.lower()
|
| 192 |
+
if any(phrase in reply_l for phrase in low_phrases):
|
| 193 |
+
# if reply only contains such phrase or is very short -> low quality
|
| 194 |
+
if word_count(reply) < 8:
|
| 195 |
+
return True
|
| 196 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
# -------------------------
|
| 199 |
+
# Streaming generator with adaptive direct-route quality checks:
|
|
|
|
|
|
|
|
|
|
| 200 |
# -------------------------
|
| 201 |
async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600, temperature=0.85):
|
| 202 |
try:
|
|
|
|
| 228 |
logger.exception("Flow analysis failed: %s", e)
|
| 229 |
flow_context = {}
|
| 230 |
|
| 231 |
+
# compute vibe + plan requirements BEFORE routing so direct route knows min_words
|
| 232 |
+
try:
|
| 233 |
+
vibe_block = get_smart_context(last_user_msg)
|
| 234 |
+
except Exception:
|
| 235 |
+
vibe_block = ""
|
| 236 |
+
plan_req = plan_response_requirements(messages, last_user_msg, flow_context, vibe_block)
|
| 237 |
+
min_words = plan_req.get("min_words", 30)
|
| 238 |
+
|
| 239 |
# Log route decision
|
| 240 |
route = flow_context.get("route", "planning")
|
| 241 |
+
complexity_score = float(flow_context.get("complexity_score", 0.0) or 0.0)
|
| 242 |
+
logger.info("Flow route: %s (score=%s) min_words=%s", route, complexity_score, min_words)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
+
# ---------- DIRECT / FAST PATH (adaptive) ----------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
if route == "direct":
|
| 246 |
+
yield f"data: {json.dumps({'status': 'Routing: direct (fast-path) - generating (adaptive)...'})}\n\n"
|
| 247 |
+
# Compose a compact system prompt but include vibe/time/strategy hints
|
|
|
|
| 248 |
base_system_instruction = (
|
| 249 |
"You are Nexari G1, an expressive and helpful AI created by Piyush.\n"
|
| 250 |
+
"For short/simple user requests, prefer concise, accurate responses. Avoid chain-of-thought. "
|
| 251 |
+
"If user seems to expect a longer answer, expand within the allowed min_words guidance."
|
| 252 |
)
|
|
|
|
|
|
|
| 253 |
time_data = get_time_context()
|
| 254 |
+
# prefer lower randomness but allow expansion on retry if needed
|
| 255 |
+
strategy_data = get_thinking_strategy(is_complex=False, detail=False, min_words_hint=min_words)
|
| 256 |
|
| 257 |
+
final_system_prompt = f"{base_system_instruction}\n{vibe_block}\n{time_data}\n{strategy_data}"
|
|
|
|
| 258 |
if messages and messages[0].get("role") == "system":
|
| 259 |
messages[0]["content"] = final_system_prompt
|
| 260 |
else:
|
| 261 |
messages.insert(0, {"role":"system","content": final_system_prompt})
|
| 262 |
|
| 263 |
+
# Decide attempts adaptively: if complexity_score extremely low -> 1 attempt; otherwise allow 2
|
| 264 |
+
max_attempts = 1 if complexity_score <= 0.12 else 2
|
| 265 |
+
|
| 266 |
+
# Slightly reduce temperature for direct replies to increase stability
|
| 267 |
+
orig_temperature = temperature
|
| 268 |
+
temperature = min(temperature, 0.72)
|
| 269 |
+
|
| 270 |
+
# Web search still allowed if intent asks
|
| 271 |
tool_data_struct = None
|
| 272 |
if intent == "internet_search":
|
| 273 |
yield f"data: {json.dumps({'status': 'Searching the web...'})}\n\n"
|
|
|
|
| 294 |
web_block += "No results found."
|
| 295 |
messages.insert(1, {"role":"assistant","content": web_block})
|
| 296 |
|
|
|
|
| 297 |
if tokenizer is None or model is None:
|
| 298 |
err = "Model not loaded. Check server logs."
|
| 299 |
payload = json.dumps({"choices":[{"delta":{"content": err}}]})
|
|
|
|
| 301 |
yield "data: [DONE]\n\n"
|
| 302 |
return
|
| 303 |
|
| 304 |
+
# prepare prompt
|
| 305 |
try:
|
| 306 |
if hasattr(tokenizer, "apply_chat_template"):
|
| 307 |
text_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
| 313 |
attempts = 0
|
| 314 |
generated_text = ""
|
| 315 |
last_meta = {}
|
|
|
|
| 316 |
while attempts < max_attempts:
|
| 317 |
attempts += 1
|
| 318 |
+
yield f"data: {json.dumps({'status': f'Generating LLM (direct) attempt {attempts}...'})}\n\n"
|
| 319 |
await asyncio.sleep(0.04)
|
| 320 |
+
|
| 321 |
model_inputs = tokenizer(text_prompt, return_tensors="pt", truncation=True, max_length=4096).to(next(model.parameters()).device)
|
| 322 |
|
| 323 |
def sync_generate():
|
|
|
|
| 352 |
plan_label, cleaned_body = extract_and_sanitize_plan(cleaned, max_plan_chars=240)
|
| 353 |
wc = word_count(cleaned_body)
|
| 354 |
last_meta = {"attempt": attempts, "word_count": wc, "raw_len": len(cleaned_body)}
|
| 355 |
+
|
| 356 |
+
# quality checks: length vs min_words and generic-lowness
|
| 357 |
+
low_quality = _is_low_quality(cleaned_body)
|
| 358 |
+
needs_expand = (wc < min_words) or low_quality
|
| 359 |
+
|
| 360 |
+
if not needs_expand or attempts >= max_attempts:
|
| 361 |
+
generated_text = cleaned_body
|
| 362 |
+
if plan_label:
|
| 363 |
+
generated_text = plan_label + "\n\n" + generated_text
|
| 364 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
else:
|
| 366 |
+
# Prepare a concise expansion note and increase temperature a bit to allow more content
|
| 367 |
+
expand_note = f"\n\nEXPAND: The user's request expects around {min_words} words. Provide a fuller helpful answer without chain-of-thought. Keep it structured and concise."
|
| 368 |
+
if messages and messages[0].get("role") == "system":
|
| 369 |
+
messages[0]["content"] = messages[0]["content"] + "\n" + expand_note
|
| 370 |
+
else:
|
| 371 |
+
messages.insert(0, {"role":"system","content": expand_note})
|
| 372 |
+
# increase temperature to encourage more content on retry, but cap
|
| 373 |
+
temperature = min(orig_temperature + 0.08, 0.95)
|
| 374 |
+
# rebuild prompt for retry
|
| 375 |
+
try:
|
| 376 |
+
if hasattr(tokenizer, "apply_chat_template"):
|
| 377 |
+
text_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 378 |
+
else:
|
| 379 |
+
text_prompt = _build_prompt_from_messages(messages)
|
| 380 |
+
except Exception:
|
| 381 |
+
text_prompt = _build_prompt_from_messages(messages)
|
| 382 |
+
await asyncio.sleep(0.02)
|
| 383 |
+
continue
|
| 384 |
|
| 385 |
+
payload = json.dumps({
|
| 386 |
+
"choices":[{"delta":{"content": generated_text}}],
|
| 387 |
+
"generation_attempts": attempts,
|
| 388 |
+
"last_attempt_meta": last_meta,
|
| 389 |
+
"route": "direct",
|
| 390 |
+
"complexity_score": complexity_score
|
| 391 |
+
})
|
| 392 |
+
yield f"data: {payload}\n\n"
|
| 393 |
yield "data: [DONE]\n\n"
|
| 394 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
|
| 396 |
+
# ---------- PLANNING ROUTE (complex) ----------
|
| 397 |
+
yield f"data: {json.dumps({'status': 'Reasoning (planner)...'})}\n\n"
|
| 398 |
+
await asyncio.sleep(0.15)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
|
| 400 |
+
# planning work (vibe_block and plan_req already computed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
min_words = plan_req["min_words"]
|
| 402 |
strictness = plan_req["strictness"]
|
| 403 |
|
|
|
|
|
|
|
|
|
|
| 404 |
if strictness:
|
| 405 |
+
temperature = min(temperature + 0.05, 0.95)
|
| 406 |
+
max_tokens = max(max_tokens, min_words // 2 + 120)
|
| 407 |
|
| 408 |
strategy_data = get_thinking_strategy(is_complex=(intent=="coding_request" or min_words>50), detail=(min_words>50), min_words_hint=min_words)
|
| 409 |
time_data = get_time_context()
|
|
|
|
| 418 |
)
|
| 419 |
|
| 420 |
flow_desc = ""
|
| 421 |
+
if flow_context:
|
| 422 |
+
label = flow_context.get("flow_label","unknown")
|
| 423 |
+
conf = round(float(flow_context.get("confidence", 0.0)), 2)
|
| 424 |
+
expl = flow_context.get("explanation", "")
|
| 425 |
flow_desc = f"\n[FLOW] Detected: {label} (confidence {conf}). {expl}\n"
|
| 426 |
|
| 427 |
final_system_prompt = f"{base_system_instruction}\n{flow_desc}\n{vibe_block}\n{time_data}\n{strategy_data}"
|
| 428 |
|
| 429 |
+
if messages and messages[0].get("role") == "system":
|
| 430 |
+
messages[0]["content"] = final_system_prompt
|
| 431 |
else:
|
| 432 |
+
messages.insert(0, {"role":"system","content": final_system_prompt})
|
| 433 |
|
| 434 |
# web search if needed
|
| 435 |
tool_data_struct = None
|
| 436 |
if intent == "internet_search":
|
| 437 |
+
yield f"data: {json.dumps({'status': 'Searching the web...'})}\n\n"
|
| 438 |
+
await asyncio.sleep(0)
|
| 439 |
try:
|
| 440 |
+
tool_data_struct = perform_web_search(last_user_msg)
|
| 441 |
except Exception as e:
|
| 442 |
logger.exception("Web search failed: %s", e)
|
| 443 |
+
tool_data_struct = {"query": last_user_msg, "results": []}
|
| 444 |
|
| 445 |
if tool_data_struct:
|
| 446 |
web_block = "### WEB_DATA (from live search) ###\n"
|
|
|
|
| 456 |
web_block += "\n---\nINSTRUCTION: Use the WEB_DATA above to answer; cite relevant source numbers inline."
|
| 457 |
else:
|
| 458 |
web_block += "No results found."
|
| 459 |
+
messages.insert(1, {"role":"assistant","content": web_block})
|
| 460 |
|
| 461 |
if tokenizer is None or model is None:
|
| 462 |
+
err = "Model not loaded. Check server logs."
|
| 463 |
+
payload = json.dumps({"choices":[{"delta":{"content": err}}]})
|
| 464 |
+
yield f"data: {payload}\n\n"
|
| 465 |
+
yield "data: [DONE]\n\n"
|
| 466 |
+
return
|
| 467 |
|
| 468 |
try:
|
| 469 |
if hasattr(tokenizer, "apply_chat_template"):
|
| 470 |
+
text_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 471 |
else:
|
| 472 |
+
text_prompt = _build_prompt_from_messages(messages)
|
| 473 |
except Exception:
|
| 474 |
+
text_prompt = _build_prompt_from_messages(messages)
|
| 475 |
+
|
| 476 |
+
# ---------- GENERATION STAGE ----------
|
| 477 |
+
max_attempts = 2
|
| 478 |
+
attempts = 0
|
| 479 |
+
last_meta = {}
|
| 480 |
+
generated_text = ""
|
| 481 |
+
while attempts < max_attempts:
|
| 482 |
+
attempts += 1
|
| 483 |
+
yield f"data: {json.dumps({'status': f'Generating LLM ({attempts})...'})}\n\n"
|
| 484 |
+
await asyncio.sleep(0.06)
|
| 485 |
+
|
| 486 |
+
model_inputs = tokenizer(text_prompt, return_tensors="pt", truncation=True, max_length=4096).to(next(model.parameters()).device)
|
| 487 |
+
|
| 488 |
+
def sync_generate():
|
| 489 |
return model.generate(
|
| 490 |
+
**model_inputs,
|
| 491 |
+
max_new_tokens=max_tokens,
|
| 492 |
+
temperature=temperature,
|
| 493 |
do_sample=True,
|
| 494 |
top_k=50,
|
| 495 |
top_p=0.92,
|
| 496 |
repetition_penalty=1.08
|
| 497 |
)
|
| 498 |
try:
|
| 499 |
+
generated_ids = await asyncio.to_thread(sync_generate)
|
| 500 |
except RuntimeError as e:
|
| 501 |
logger.exception("Generation failed (possible OOM): %s", e)
|
| 502 |
+
err_payload = json.dumps({"choices":[{"delta":{"content": "Model generation failed due to resource limits."}}]})
|
| 503 |
+
yield f"data: {err_payload}\n\n"
|
| 504 |
+
yield "data: [DONE]\n\n"
|
| 505 |
+
return
|
| 506 |
|
| 507 |
+
input_len = model_inputs["input_ids"].shape[1]
|
| 508 |
+
new_tokens = generated_ids[0][input_len:]
|
| 509 |
+
raw_response = tokenizer.decode(new_tokens, skip_special_tokens=True).strip()
|
| 510 |
+
cleaned = safe_replace_providers(raw_response)
|
| 511 |
|
| 512 |
forbidden = ["I am a human","I have a physical body","I am alive"]
|
| 513 |
for fc in forbidden:
|
| 514 |
+
if fc.lower() in cleaned.lower():
|
| 515 |
+
cleaned = re.sub(re.escape(fc), "I am an AI — expressive and interactive.", cleaned, flags=re.IGNORECASE)
|
| 516 |
|
| 517 |
+
plan_label, cleaned_body = extract_and_sanitize_plan(cleaned, max_plan_chars=240)
|
| 518 |
+
wc = word_count(cleaned_body)
|
| 519 |
+
last_meta = {"attempt": attempts, "word_count": wc, "raw_len": len(cleaned_body)}
|
| 520 |
|
| 521 |
+
if wc >= min_words or attempts >= max_attempts or plan_req["strictness"] == 0:
|
| 522 |
+
generated_text = cleaned_body
|
| 523 |
+
if plan_label:
|
| 524 |
+
generated_text = plan_label + "\n\n" + generated_text
|
| 525 |
break
|
| 526 |
else:
|
| 527 |
+
expand_note = f"\n\nEXPAND: The user's request needs ~{min_words} words. Expand previous answer (concise style) and avoid chain-of-thought."
|
| 528 |
+
if messages and messages[0].get("role") == "system":
|
| 529 |
+
messages[0]["content"] = messages[0]["content"] + "\n" + expand_note
|
| 530 |
else:
|
| 531 |
+
messages.insert(0, {"role":"system","content": expand_note})
|
| 532 |
+
temperature = min(temperature + 0.07, 0.98)
|
| 533 |
try:
|
| 534 |
if hasattr(tokenizer, "apply_chat_template"):
|
| 535 |
+
text_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 536 |
else:
|
| 537 |
+
text_prompt = _build_prompt_from_messages(messages)
|
| 538 |
except Exception:
|
| 539 |
+
text_prompt = _build_prompt_from_messages(messages)
|
| 540 |
await asyncio.sleep(0.02)
|
| 541 |
continue
|
| 542 |
|
| 543 |
+
if not generated_text:
|
| 544 |
+
plan_label, cleaned_body = extract_and_sanitize_plan(cleaned, max_plan_chars=240)
|
| 545 |
+
generated_text = (plan_label + "\n\n" if plan_label else "") + (cleaned_body or cleaned)
|
| 546 |
|
| 547 |
+
generated_text = re.sub(r"\bPlan\s*:\s*$", "", generated_text, flags=re.IGNORECASE).strip()
|
| 548 |
+
generated_text = generated_text.replace("I can help with that.", "I can help with that — let me explain. 🙂")
|
| 549 |
|
| 550 |
+
payload = json.dumps({
|
| 551 |
+
"choices":[{"delta":{"content": generated_text}}],
|
| 552 |
+
"generation_attempts": attempts,
|
| 553 |
+
"last_attempt_meta": last_meta,
|
| 554 |
+
"route": route,
|
| 555 |
+
"complexity_score": complexity_score
|
| 556 |
+
})
|
| 557 |
+
yield f"data: {payload}\n\n"
|
| 558 |
+
yield "data: [DONE]\n\n"
|
| 559 |
+
return
|
| 560 |
|
| 561 |
+
except asyncio.CancelledError:
|
| 562 |
+
logger.warning("Streaming cancelled.")
|
| 563 |
+
return
|
| 564 |
except Exception as e:
|
| 565 |
+
logger.exception(f"Generator error: {e}")
|
| 566 |
+
err_payload = json.dumps({"choices":[{"delta":{"content": f"Internal error: {e}"}}]})
|
| 567 |
+
try:
|
| 568 |
+
yield f"data: {err_payload}\n\n"
|
| 569 |
+
yield "data: [DONE]\n\n"
|
| 570 |
+
except Exception:
|
| 571 |
+
return
|
| 572 |
|
| 573 |
# -------------------------
|
| 574 |
# Endpoints
|
|
|
|
| 615 |
|
| 616 |
if __name__ == "__main__":
|
| 617 |
import uvicorn
|
| 618 |
+
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))
|