Update app.py
Browse files
app.py
CHANGED
|
@@ -1,65 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
from transformers import AutoModel
|
|
|
|
| 7 |
|
| 8 |
-
DESCRIPTION = "IndicConformer-600M Multilingual ASR (CTC + RNNT)"
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
"
|
| 15 |
-
"
|
| 16 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
}
|
| 18 |
|
|
|
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
|
| 21 |
-
# Load Indic Conformer model
|
|
|
|
| 22 |
model = AutoModel.from_pretrained("ai4bharat/indic-conformer-600m-multilingual", trust_remote_code=True).to(device)
|
| 23 |
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
@spaces.GPU
|
| 26 |
-
def
|
| 27 |
-
|
|
|
|
| 28 |
|
| 29 |
# Load and preprocess audio
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
try:
|
| 35 |
-
#
|
| 36 |
with torch.no_grad():
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
except Exception as e:
|
| 40 |
-
return f"Error: {str(e)}", ""
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
return transcription_ctc.strip(), transcription_rnnt.strip()
|
| 43 |
|
| 44 |
# Gradio UI
|
| 45 |
-
with gr.Blocks() as demo:
|
| 46 |
gr.Markdown(f"## {DESCRIPTION}")
|
|
|
|
|
|
|
| 47 |
with gr.Row():
|
| 48 |
-
with gr.Column():
|
| 49 |
audio = gr.Audio(label="Upload or Record Audio", type="filepath")
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
gr.
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
|
| 64 |
if __name__ == "__main__":
|
| 65 |
-
demo.queue().launch()
|
|
|
|
|
|
|
|
|
| 1 |
+
Of course. I'll update the code to perform automatic language identification based on the transcription's characters and common words before providing the final, high-quality transcription.
|
| 2 |
+
|
| 3 |
+
This new version will:
|
| 4 |
+
|
| 5 |
+
1. **Remove the language dropdown**, as the language will be detected automatically.
|
| 6 |
+
2. Perform a quick, initial transcription using Hindi as a "pivot" language.
|
| 7 |
+
3. Analyze the resulting text against a **custom dictionary** of unique characters and common words for all 22 supported languages.
|
| 8 |
+
4. Once the language is identified, it will perform the final, more accurate transcription using the detected language code.
|
| 9 |
+
|
| 10 |
+
-----
|
| 11 |
+
|
| 12 |
+
### **Updated Code with Automatic Language Identification**
|
| 13 |
+
|
| 14 |
+
Here is the complete, updated code. You can replace your existing script with this one.
|
| 15 |
+
|
| 16 |
+
```python
|
| 17 |
from __future__ import annotations
|
| 18 |
import torch
|
| 19 |
import torchaudio
|
| 20 |
import gradio as gr
|
| 21 |
import spaces
|
| 22 |
from transformers import AutoModel
|
| 23 |
+
import re
|
| 24 |
|
| 25 |
+
DESCRIPTION = "IndicConformer-600M Multilingual ASR (CTC + RNNT) with Auto Language ID"
|
| 26 |
|
| 27 |
+
# --- Language Identification Data ---
|
| 28 |
+
# A dictionary containing unique character sets and common words for each language.
|
| 29 |
+
# This data is used by our custom language identification logic.
|
| 30 |
+
LANGUAGE_DATA = {
|
| 31 |
+
"as": {"chars": set("অআইঈউঊঋএঐওঔকখগঘঙচছজঝঞটঠডঢণতথদধনপফবভমযৰলৱশষসহৎংঃঽািীুূৃেৈোৌ্"), "words": set(["আৰু", "হয়", "এটা", "কৰি", "ওপৰত"])},
|
| 32 |
+
"bn": {"chars": set("অআইঈউঊঋএঐওঔকখগঘঙচছজঝঞটঠডঢণতথদধনপফবভমযরলশষসহৎংঃঽািীুূৃেৈোৌ্ড়ঢ়য়"), "words": set(["এবং", "একটি", "করুন", "জন্য", "সঙ্গে"])},
|
| 33 |
+
"br": {"chars": set("अआइईउऊऋएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसह़ािीुূृेैोौ्"), "words": set(["आरो", "एसे", "मोनसे", "माव", "आव"])},
|
| 34 |
+
"doi": {"chars": set("अआइईउऊएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसहािीुूेैोौ्"), "words": set(["ते", "दे", "ऐ", "इक", "ओह्"])},
|
| 35 |
+
"gu": {"chars": set("અઆઇઈઉઊઋએઐઓઔકખગઘઙચછજઝઞટઠડઢણતથદધનપફબભમયરલવશષસહ઼ાિીુૂૃેૈોૌ્"), "words": set(["અને", "એક", "માટે", "છે", "સાથે"])},
|
| 36 |
+
"hi": {"chars": set("अआइईउऊऋएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसहािीुूृेैोौ्"), "words": set(["और", "है", "एक", "में", "के"])},
|
| 37 |
+
"kn": {"chars": set("ಅಆಇಈಉಊಋಎಏಐಒಓಔಕಖಗಘಙಚಛಜಝಞಟಠಡಢಣತಥದಧನಪಫಬಭಮಯರಲವಶಷಸಹಳಱಾಿೀುೂೃೆೇೈೊೋೌ್"), "words": set(["ಮತ್ತು", "ಒಂದು", "ಹೇಗೆ", "ನಾನು", "ಇದೆ"])},
|
| 38 |
+
"ks": {"chars": set("اآبپتٹثجچحخدڈذرڑزژسشصضطظعغفقکگلمنوھءییے"), "words": set([" تہٕ", "چھُ", "اکھ", "منز", "کیتھ"])},
|
| 39 |
+
"kok": {"chars": set("अआइईउऊऋएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसहािीुूृेैोौ्"), "words": set(["आनी", "एक", "कर", "खातीर", "कडेन"])},
|
| 40 |
+
"mai": {"chars": set("अआइईउऊऋएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसहािीुूृेैोौ्"), "words": set(["आ", "एक", "हम", "अछि", "क"])},
|
| 41 |
+
"ml": {"chars": set("അആഇഈഉഊഋഎഏഐഒഓഔകഖഗഘങചഛജഝഞടഠഡഢണതഥദധനപഫബഭമയരലവശഷസഹളഴറാിീുൂൃെേൈൊോൌ്"), "words": set(["ഒരു", "மற்றும்", "എങ്ങനെ", "ഞാൻ", "ഇതു"])},
|
| 42 |
+
"mni": {"chars": set("ꯑ꯲꯳꯴꯵꯶꯷꯸꯹ꯀꯂꯃꯄꯅꯆꯇꯈꯉꯊꯋꯌꯍꯎꯏꯐꯑ"), "words": set(["ꯗꯥ", "ꯑꯃꯥ", "ꯀꯔꯤ", "ꯑꯩꯅꯥ", "ꯑꯁꯤ"])},
|
| 43 |
+
"mr": {"chars": set("अआइईउऊऋएऐओऔकखगघङचछजझ��टठडढणतथदधनपफबभमयरलवशषसहािीुूृेैोौ्ळ"), "words": set(["आणि", "एक", "आहे", "मी", "तू"])},
|
| 44 |
+
"ne": {"chars": set("अआइईउऊऋएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसहािीुूृेैोौ्"), "words": set(["र", "एक", "हो", "म", "तिमी"])},
|
| 45 |
+
"or": {"chars": set("ଅଆଇଈଉଊଋଏଐଓଔକଖଗଘଙଚଛଜଝଞଟଠଡଢଣତଥଦଧନପଫବଭମଯରଲଳବଶଷସହକ୍ଷାିୀୁୂୃେୈୋୌ୍"), "words": set(["ଏବଂ", "ଗୋଟିଏ", "କରନ୍ତୁ", "ପାଇଁ", "ସହିତ"])},
|
| 46 |
+
"pa": {"chars": set("ਅਆਇਈਉਊਏਐਓਔਕਖਗਘਙਚਛਜਝਞਟਠਡਢਣਤਥਦਧਨਪਫਬਭਮਯਰਲਵਸ਼ਸਹਖ਼ਗ਼ਜ਼ੜਫ਼ਲ਼ਿੀੁੂੇੈੋੌ੍"), "words": set(["ਅਤੇ", "ਇੱਕ", "ਹੈ", "ਵਿੱਚ", "ਨੂੰ"])},
|
| 47 |
+
"sa": {"chars": set("अआइईउऊऋएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसहािीुूृेैोौ्"), "words": set(["च", "एकः", "अस्ति", "अहम्", "त्वम्"])},
|
| 48 |
+
"sat": {"chars": set("ᱚᱟᱤᱥᱩᱨᱮႅᱳ鄴ᱠᱜᱝᱪᱡᱧଟଡᱬᱛᱫ Narayan pur pᱷᱵᱶᱷ"), "words": set(["ᱟᱨ", "ᱫᱚ", "হয়", "ఒకటి", "మరియు"])},
|
| 49 |
+
"sd": {"chars": set("اآبڀتٽثپجڄ جھچحخڌدڏڊذرزڙژسشصضطظعغفڦقڪکگڳڱلمنوھ ءي"), "words": set(["۽", "هڪ", "آهي", "۾", "کي"])},
|
| 50 |
+
"ta": {"chars": set("அஆஇஈஉஊஎஏஐஒஓஔகஙசஞடணதநனபமயரலவழளஷஸஹாిീுூெேைொோௌ்"), "words": set(["மற்றும்", "ஒரு", "வேண்டும்", "நான்", "இது"])},
|
| 51 |
+
"te": {"chars": set("అఆఇఈఉఊఋఎఏఐఒఓఔకఖగఘఙచఛజఝఞటఠడఢణతథదధనపఫబభమయరలవశషసహళక్షఱాిీుూృెేైొోౌ్"), "words": set(["మరియు", "ఒక", "வேண்டும்", "నేను", "ఇది"])},
|
| 52 |
+
"ur": {"chars": set("اآبپتٹثجچحخدڈذرڑزژسشصضطظعغفقکگلمنوھءییے"), "words": set(["اور", "ہے", "ایک", "میں", "کے"])},
|
| 53 |
}
|
| 54 |
|
| 55 |
+
LANGUAGE_CODE_TO_NAME = {v: k for k, v in LANGUAGE_DATA.items()}
|
| 56 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 57 |
|
| 58 |
+
# Load Indic Conformer model
|
| 59 |
+
print("Loading IndicConformer model...")
|
| 60 |
model = AutoModel.from_pretrained("ai4bharat/indic-conformer-600m-multilingual", trust_remote_code=True).to(device)
|
| 61 |
model.eval()
|
| 62 |
+
print("✅ Model loaded successfully.")
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def identify_language(text: str) -> str | None:
|
| 66 |
+
"""Identifies the language of a given text based on character sets and common words."""
|
| 67 |
+
if not text.strip():
|
| 68 |
+
return None
|
| 69 |
+
|
| 70 |
+
scores = {lang: 0 for lang in LANGUAGE_DATA}
|
| 71 |
+
text_chars = set(text)
|
| 72 |
+
# Use regex to split words, handling various scripts
|
| 73 |
+
text_words = set(re.split(r'[\s,.:;!?]+', text))
|
| 74 |
+
|
| 75 |
+
for lang_code, data in LANGUAGE_DATA.items():
|
| 76 |
+
char_score = len(text_chars.intersection(data["chars"]))
|
| 77 |
+
word_score = len(text_words.intersection(data["words"]))
|
| 78 |
+
|
| 79 |
+
# Give more weight to character matches as they are a stronger signal of the script
|
| 80 |
+
scores[lang_code] = (char_score * 2) + word_score
|
| 81 |
+
|
| 82 |
+
# Identify the language with the highest score
|
| 83 |
+
# Return None if the highest score is very low, indicating a poor match
|
| 84 |
+
max_score = max(scores.values())
|
| 85 |
+
if max_score < 3: # Heuristic threshold to prevent misidentification on noise
|
| 86 |
+
return None
|
| 87 |
+
|
| 88 |
+
identified_code = max(scores, key=scores.get)
|
| 89 |
+
return identified_code
|
| 90 |
+
|
| 91 |
|
| 92 |
@spaces.GPU
|
| 93 |
+
def transcribe_and_identify(audio_path):
|
| 94 |
+
if not audio_path:
|
| 95 |
+
return "Please provide an audio file.", "", ""
|
| 96 |
|
| 97 |
# Load and preprocess audio
|
| 98 |
+
try:
|
| 99 |
+
waveform, sr = torchaudio.load(audio_path)
|
| 100 |
+
waveform = waveform.mean(dim=0, keepdim=True) if waveform.shape[0] > 1 else waveform
|
| 101 |
+
waveform = torchaudio.functional.resample(waveform, sr, 16000).to(device)
|
| 102 |
+
except Exception as e:
|
| 103 |
+
return f"Error loading audio: {e}", "", ""
|
| 104 |
|
| 105 |
try:
|
| 106 |
+
# 1. Perform a fast, initial transcription using a pivot language (Hindi)
|
| 107 |
with torch.no_grad():
|
| 108 |
+
initial_transcription = model(waveform, "hi", "ctc")
|
| 109 |
+
|
| 110 |
+
# 2. Identify the language from the initial transcription
|
| 111 |
+
identified_lang_code = identify_language(initial_transcription)
|
| 112 |
+
|
| 113 |
+
if not identified_lang_code:
|
| 114 |
+
detected_lang_str = "Language not detected or unsupported."
|
| 115 |
+
return detected_lang_str, initial_transcription + " (pivot)", "Could not perform final transcription."
|
| 116 |
+
|
| 117 |
+
detected_lang_str = f"Detected Language: {LANGUAGE_CODE_TO_NAME.get(identified_lang_code, 'Unknown')}"
|
| 118 |
+
|
| 119 |
+
# 3. Perform the final, high-quality transcription using the identified language
|
| 120 |
+
with torch.no_grad():
|
| 121 |
+
transcription_ctc = model(waveform, identified_lang_code, "ctc")
|
| 122 |
+
transcription_rnnt = model(waveform, identified_lang_code, "rnnt")
|
| 123 |
+
|
| 124 |
except Exception as e:
|
| 125 |
+
return f"Error during transcription: {str(e)}", "", ""
|
| 126 |
+
|
| 127 |
+
return detected_lang_str, transcription_ctc.strip(), transcription_rnnt.strip()
|
| 128 |
|
|
|
|
| 129 |
|
| 130 |
# Gradio UI
|
| 131 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 132 |
gr.Markdown(f"## {DESCRIPTION}")
|
| 133 |
+
gr.Markdown("Upload or record audio in any of the 22 supported Indian languages. The app will automatically detect the language and provide the transcription using both CTC and RNNT decoding.")
|
| 134 |
+
|
| 135 |
with gr.Row():
|
| 136 |
+
with gr.Column(scale=1):
|
| 137 |
audio = gr.Audio(label="Upload or Record Audio", type="filepath")
|
| 138 |
+
transcribe_btn = gr.Button("Transcribe", variant="primary")
|
| 139 |
+
|
| 140 |
+
with gr.Column(scale=2):
|
| 141 |
+
detected_lang_output = gr.Label(label="Language Detection Result")
|
| 142 |
+
gr.Markdown("### RNNT Transcription (More Accurate)")
|
| 143 |
+
rnnt_output = gr.Textbox(lines=3, label="RNNT Output")
|
| 144 |
+
gr.Markdown("### CTC Transcription (Faster)")
|
| 145 |
+
ctc_output = gr.Textbox(lines=3, label="CTC Output")
|
| 146 |
+
|
| 147 |
+
transcribe_btn.click(
|
| 148 |
+
fn=transcribe_and_identify,
|
| 149 |
+
inputs=[audio],
|
| 150 |
+
outputs=[detected_lang_output, ctc_output, rnnt_output],
|
| 151 |
+
api_name="transcribe"
|
| 152 |
+
)
|
| 153 |
|
| 154 |
if __name__ == "__main__":
|
| 155 |
+
demo.queue().launch(share=True)
|
| 156 |
+
|
| 157 |
+
```
|