Spaces:
Sleeping
Sleeping
Local AI Assistant
commited on
Commit
·
e9ea7c0
0
Parent(s):
Clean backend deployment for Hugging Face
Browse files- .dockerignore +8 -0
- Dockerfile +23 -0
- README.md +91 -0
- api.py +342 -0
- chat_engine.py +80 -0
- database.py +12 -0
- embed_logo.py +73 -0
- image_engine.py +0 -0
- models.py +45 -0
- rag_engine.py +64 -0
- requirements.txt +23 -0
- schemas.py +80 -0
- search_engine.py +21 -0
.dockerignore
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
frontend/
|
| 2 |
+
.git/
|
| 3 |
+
.gitignore
|
| 4 |
+
__pycache__/
|
| 5 |
+
*.pyc
|
| 6 |
+
.env
|
| 7 |
+
venv/
|
| 8 |
+
node_modules/
|
Dockerfile
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use Python 3.10
|
| 2 |
+
FROM python:3.10
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Copy requirements and install dependencies
|
| 8 |
+
COPY requirements.txt .
|
| 9 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 10 |
+
|
| 11 |
+
# Copy the rest of the application
|
| 12 |
+
COPY . .
|
| 13 |
+
|
| 14 |
+
# Create a writable directory for cache (Hugging Face requirement)
|
| 15 |
+
RUN mkdir -p /app/cache
|
| 16 |
+
ENV XDG_CACHE_HOME=/app/cache
|
| 17 |
+
RUN chmod -R 777 /app/cache
|
| 18 |
+
|
| 19 |
+
# Expose port 7860 (Hugging Face default)
|
| 20 |
+
EXPOSE 7860
|
| 21 |
+
|
| 22 |
+
# Run the application
|
| 23 |
+
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: CoolShot AI Backend
|
| 3 |
+
emoji: 🚀
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: docker
|
| 7 |
+
app_port: 7860
|
| 8 |
+
app_file: api.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Cool-Shot-Systems-AI-Agent
|
| 13 |
+
|
| 14 |
+
A premium **Local AI Assistant** that runs entirely on your machine, featuring a modern, animated UI.
|
| 15 |
+
|
| 16 |
+

|
| 17 |
+
|
| 18 |
+
## 🚀 Features
|
| 19 |
+
|
| 20 |
+
* **💬 Intelligent Chat**: Powered by Microsoft's **Phi-3 Mini**, capable of reasoning and conversation.
|
| 21 |
+
* **🎨 Image Generation**: Create stunning visuals in seconds using **SDXL Turbo**.
|
| 22 |
+
* **✨ Modern UI**: Built with **React**, **Tailwind CSS**, and **Framer Motion** for a smooth, glassmorphism experience.
|
| 23 |
+
* **🔒 100% Local**: No data leaves your computer. No API keys required.
|
| 24 |
+
|
| 25 |
+
## 🛠️ Prerequisites
|
| 26 |
+
|
| 27 |
+
* **Python 3.10+**
|
| 28 |
+
* **Node.js 18+**
|
| 29 |
+
* **Git**
|
| 30 |
+
* *(Recommended)* NVIDIA GPU with 8GB+ VRAM for faster generation.
|
| 31 |
+
|
| 32 |
+
## ⚡ Quick Start
|
| 33 |
+
|
| 34 |
+
1. **Clone the repository**:
|
| 35 |
+
|
| 36 |
+
```bash
|
| 37 |
+
git clone https://github.com/rayben445/Cool-Shot-Systems-AI-Agent.git
|
| 38 |
+
cd Cool-Shot-Systems-AI-Agent
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
2. **Run the One-Click Installer**:
|
| 42 |
+
Double-click `start_app.bat` on Windows.
|
| 43 |
+
|
| 44 |
+
*Or run manually:*
|
| 45 |
+
|
| 46 |
+
```bash
|
| 47 |
+
# Backend
|
| 48 |
+
cd local_ai_assistant
|
| 49 |
+
pip install -r requirements.txt
|
| 50 |
+
python api.py
|
| 51 |
+
|
| 52 |
+
# Frontend
|
| 53 |
+
cd frontend
|
| 54 |
+
npm install
|
| 55 |
+
npm run dev
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
## 🏗️ Tech Stack
|
| 59 |
+
|
| 60 |
+
* **Backend**: Python, FastAPI, PyTorch, Transformers, Diffusers
|
| 61 |
+
* **Frontend**: React, Vite, Tailwind CSS, Framer Motion, Lucide React
|
| 62 |
+
|
| 63 |
+
## 🌐 Deployment
|
| 64 |
+
|
| 65 |
+
### Deploy to Vercel
|
| 66 |
+
|
| 67 |
+
The frontend can be easily deployed to Vercel for free! See the detailed deployment guide:
|
| 68 |
+
|
| 69 |
+
📖 **[Vercel Deployment Guide](VERCEL_DEPLOYMENT.md)**
|
| 70 |
+
|
| 71 |
+
Quick steps:
|
| 72 |
+
1. Fork/clone this repository
|
| 73 |
+
2. Sign up at [Vercel](https://vercel.com)
|
| 74 |
+
3. Import your repository
|
| 75 |
+
4. Set root directory to `frontend`
|
| 76 |
+
5. Add environment variable: `VITE_API_URL` with your backend URL
|
| 77 |
+
6. Deploy!
|
| 78 |
+
|
| 79 |
+
### Backend Deployment
|
| 80 |
+
|
| 81 |
+
The backend can be deployed to:
|
| 82 |
+
- **Hugging Face Spaces** (current deployment)
|
| 83 |
+
- **Railway**
|
| 84 |
+
- **Render**
|
| 85 |
+
- **Google Cloud Run / AWS / Azure**
|
| 86 |
+
|
| 87 |
+
See [VERCEL_DEPLOYMENT.md](VERCEL_DEPLOYMENT.md) for detailed backend deployment options.
|
| 88 |
+
|
| 89 |
+
## 📄 License
|
| 90 |
+
|
| 91 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
api.py
ADDED
|
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, Depends, status
|
| 2 |
+
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
|
| 3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
+
from sqlalchemy.orm import Session, joinedload
|
| 5 |
+
from sqlalchemy import func
|
| 6 |
+
from datetime import datetime, timedelta
|
| 7 |
+
from typing import Optional, List
|
| 8 |
+
from jose import JWTError, jwt
|
| 9 |
+
from passlib.context import CryptContext
|
| 10 |
+
from pydantic import BaseModel
|
| 11 |
+
import uvicorn
|
| 12 |
+
import os
|
| 13 |
+
import base64
|
| 14 |
+
|
| 15 |
+
from chat_engine import ChatEngine
|
| 16 |
+
from image_engine import ImageEngine
|
| 17 |
+
import models
|
| 18 |
+
import schemas
|
| 19 |
+
from database import SessionLocal, engine
|
| 20 |
+
|
| 21 |
+
# Create tables
|
| 22 |
+
models.Base.metadata.create_all(bind=engine)
|
| 23 |
+
|
| 24 |
+
app = FastAPI()
|
| 25 |
+
# Force git update
|
| 26 |
+
|
| 27 |
+
# Security Config
|
| 28 |
+
SECRET_KEY = "your-secret-key-keep-it-secret" # In production, use env var
|
| 29 |
+
ALGORITHM = "HS256"
|
| 30 |
+
ACCESS_TOKEN_EXPIRE_MINUTES = 30
|
| 31 |
+
|
| 32 |
+
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
|
| 33 |
+
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
| 34 |
+
|
| 35 |
+
# Enable CORS
|
| 36 |
+
app.add_middleware(
|
| 37 |
+
CORSMiddleware,
|
| 38 |
+
allow_origins=["*"],
|
| 39 |
+
allow_credentials=True,
|
| 40 |
+
allow_methods=["*"],
|
| 41 |
+
allow_headers=["*"],
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
from fastapi.responses import JSONResponse
|
| 45 |
+
|
| 46 |
+
@app.exception_handler(Exception)
|
| 47 |
+
async def global_exception_handler(request, exc):
|
| 48 |
+
return JSONResponse(
|
| 49 |
+
status_code=500,
|
| 50 |
+
content={"detail": f"Internal Server Error: {str(exc)}"},
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
from fastapi import UploadFile, File
|
| 54 |
+
import shutil
|
| 55 |
+
from rag_engine import RAGEngine
|
| 56 |
+
|
| 57 |
+
# Initialize engines
|
| 58 |
+
print("Initializing AI Engines...")
|
| 59 |
+
chat_engine = ChatEngine()
|
| 60 |
+
image_engine = ImageEngine()
|
| 61 |
+
rag_engine = RAGEngine()
|
| 62 |
+
print("AI Engines Ready!")
|
| 63 |
+
|
| 64 |
+
# Dependency
|
| 65 |
+
def get_db():
|
| 66 |
+
db = SessionLocal()
|
| 67 |
+
try:
|
| 68 |
+
yield db
|
| 69 |
+
finally:
|
| 70 |
+
db.close()
|
| 71 |
+
|
| 72 |
+
# Auth Helpers
|
| 73 |
+
def verify_password(plain_password, hashed_password):
|
| 74 |
+
if len(plain_password) > 72:
|
| 75 |
+
plain_password = plain_password[:72]
|
| 76 |
+
return pwd_context.verify(plain_password, hashed_password)
|
| 77 |
+
|
| 78 |
+
def get_password_hash(password):
|
| 79 |
+
if len(password) > 72:
|
| 80 |
+
password = password[:72]
|
| 81 |
+
return pwd_context.hash(password)
|
| 82 |
+
|
| 83 |
+
def create_access_token(data: dict, expires_delta: Optional[timedelta] = None):
|
| 84 |
+
to_encode = data.copy()
|
| 85 |
+
if expires_delta:
|
| 86 |
+
expire = datetime.utcnow() + expires_delta
|
| 87 |
+
else:
|
| 88 |
+
expire = datetime.utcnow() + timedelta(minutes=15)
|
| 89 |
+
to_encode.update({"exp": expire})
|
| 90 |
+
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
|
| 91 |
+
return encoded_jwt
|
| 92 |
+
|
| 93 |
+
async def get_current_user(token: str = Depends(oauth2_scheme), db: Session = Depends(get_db)):
|
| 94 |
+
credentials_exception = HTTPException(
|
| 95 |
+
status_code=status.HTTP_401_UNAUTHORIZED,
|
| 96 |
+
detail="Could not validate credentials",
|
| 97 |
+
headers={"WWW-Authenticate": "Bearer"},
|
| 98 |
+
)
|
| 99 |
+
try:
|
| 100 |
+
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
|
| 101 |
+
email: str = payload.get("sub")
|
| 102 |
+
if email is None:
|
| 103 |
+
raise credentials_exception
|
| 104 |
+
token_data = schemas.TokenData(email=email)
|
| 105 |
+
except JWTError:
|
| 106 |
+
raise credentials_exception
|
| 107 |
+
user = db.query(models.User).filter(models.User.email == token_data.email).first()
|
| 108 |
+
if user is None:
|
| 109 |
+
raise credentials_exception
|
| 110 |
+
return user
|
| 111 |
+
|
| 112 |
+
async def get_current_admin(current_user: models.User = Depends(get_current_user)):
|
| 113 |
+
if not current_user.is_admin:
|
| 114 |
+
raise HTTPException(status_code=403, detail="Not authorized")
|
| 115 |
+
return current_user
|
| 116 |
+
|
| 117 |
+
# Auth Endpoints
|
| 118 |
+
@app.post("/register", response_model=schemas.User)
|
| 119 |
+
def register(user: schemas.UserCreate, db: Session = Depends(get_db)):
|
| 120 |
+
db_user = db.query(models.User).filter(models.User.email == user.email).first()
|
| 121 |
+
if db_user:
|
| 122 |
+
raise HTTPException(status_code=400, detail="Email already registered")
|
| 123 |
+
|
| 124 |
+
hashed_password = get_password_hash(user.password)
|
| 125 |
+
|
| 126 |
+
# Check if this is the Admin user
|
| 127 |
+
is_admin = False
|
| 128 |
+
if user.email == "[email protected]":
|
| 129 |
+
is_admin = True
|
| 130 |
+
|
| 131 |
+
db_user = models.User(
|
| 132 |
+
email=user.email,
|
| 133 |
+
hashed_password=hashed_password,
|
| 134 |
+
full_name=user.full_name,
|
| 135 |
+
company_name=user.company_name,
|
| 136 |
+
is_admin=is_admin
|
| 137 |
+
)
|
| 138 |
+
db.add(db_user)
|
| 139 |
+
db.commit()
|
| 140 |
+
db.refresh(db_user)
|
| 141 |
+
return db_user
|
| 142 |
+
|
| 143 |
+
@app.post("/token", response_model=schemas.Token)
|
| 144 |
+
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends(), db: Session = Depends(get_db)):
|
| 145 |
+
user = db.query(models.User).filter(models.User.email == form_data.username).first()
|
| 146 |
+
if not user or not verify_password(form_data.password, user.hashed_password):
|
| 147 |
+
raise HTTPException(
|
| 148 |
+
status_code=status.HTTP_401_UNAUTHORIZED,
|
| 149 |
+
detail="Incorrect username or password",
|
| 150 |
+
headers={"WWW-Authenticate": "Bearer"},
|
| 151 |
+
)
|
| 152 |
+
access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
|
| 153 |
+
access_token = create_access_token(
|
| 154 |
+
data={"sub": user.email}, expires_delta=access_token_expires
|
| 155 |
+
)
|
| 156 |
+
return {"access_token": access_token, "token_type": "bearer"}
|
| 157 |
+
|
| 158 |
+
@app.get("/users/me", response_model=schemas.User)
|
| 159 |
+
async def read_users_me(current_user: schemas.User = Depends(get_current_user)):
|
| 160 |
+
return current_user
|
| 161 |
+
|
| 162 |
+
# Conversation Endpoints
|
| 163 |
+
@app.post("/conversations", response_model=schemas.Conversation)
|
| 164 |
+
async def create_conversation(conversation: schemas.ConversationCreate, current_user: models.User = Depends(get_current_user), db: Session = Depends(get_db)):
|
| 165 |
+
db_conversation = models.Conversation(**conversation.dict(), user_id=current_user.id)
|
| 166 |
+
db.add(db_conversation)
|
| 167 |
+
db.commit()
|
| 168 |
+
db.refresh(db_conversation)
|
| 169 |
+
return db_conversation
|
| 170 |
+
|
| 171 |
+
@app.get("/conversations", response_model=List[schemas.Conversation])
|
| 172 |
+
async def get_conversations(current_user: models.User = Depends(get_current_user), db: Session = Depends(get_db)):
|
| 173 |
+
return db.query(models.Conversation).filter(models.Conversation.user_id == current_user.id).order_by(models.Conversation.updated_at.desc()).all()
|
| 174 |
+
|
| 175 |
+
@app.get("/conversations/{conversation_id}/messages", response_model=List[schemas.ChatMessage])
|
| 176 |
+
async def get_conversation_messages(conversation_id: int, current_user: models.User = Depends(get_current_user), db: Session = Depends(get_db)):
|
| 177 |
+
conversation = db.query(models.Conversation).filter(models.Conversation.id == conversation_id, models.Conversation.user_id == current_user.id).first()
|
| 178 |
+
if not conversation:
|
| 179 |
+
raise HTTPException(status_code=404, detail="Conversation not found")
|
| 180 |
+
return db.query(models.ChatMessage).filter(models.ChatMessage.conversation_id == conversation_id).order_by(models.ChatMessage.timestamp).all()
|
| 181 |
+
|
| 182 |
+
# Saved Prompt Endpoints
|
| 183 |
+
@app.post("/prompts", response_model=schemas.SavedPrompt)
|
| 184 |
+
async def create_prompt(prompt: schemas.SavedPromptCreate, current_user: models.User = Depends(get_current_user), db: Session = Depends(get_db)):
|
| 185 |
+
db_prompt = models.SavedPrompt(**prompt.dict(), user_id=current_user.id)
|
| 186 |
+
db.add(db_prompt)
|
| 187 |
+
db.commit()
|
| 188 |
+
db.refresh(db_prompt)
|
| 189 |
+
return db_prompt
|
| 190 |
+
|
| 191 |
+
@app.get("/prompts", response_model=List[schemas.SavedPrompt])
|
| 192 |
+
async def get_prompts(current_user: models.User = Depends(get_current_user), db: Session = Depends(get_db)):
|
| 193 |
+
return db.query(models.SavedPrompt).filter(models.SavedPrompt.user_id == current_user.id).order_by(models.SavedPrompt.created_at.desc()).all()
|
| 194 |
+
|
| 195 |
+
@app.delete("/prompts/{prompt_id}")
|
| 196 |
+
async def delete_prompt(prompt_id: int, current_user: models.User = Depends(get_current_user), db: Session = Depends(get_db)):
|
| 197 |
+
db_prompt = db.query(models.SavedPrompt).filter(models.SavedPrompt.id == prompt_id, models.SavedPrompt.user_id == current_user.id).first()
|
| 198 |
+
if not db_prompt:
|
| 199 |
+
raise HTTPException(status_code=404, detail="Prompt not found")
|
| 200 |
+
db.delete(db_prompt)
|
| 201 |
+
db.commit()
|
| 202 |
+
return {"status": "success"}
|
| 203 |
+
|
| 204 |
+
# Admin Endpoints
|
| 205 |
+
@app.get("/admin/users", response_model=List[schemas.UserActivity])
|
| 206 |
+
async def get_all_users(current_user: models.User = Depends(get_current_admin), db: Session = Depends(get_db)):
|
| 207 |
+
# Get users with message count
|
| 208 |
+
users = db.query(models.User).all()
|
| 209 |
+
result = []
|
| 210 |
+
for user in users:
|
| 211 |
+
msg_count = db.query(func.count(models.ChatMessage.id)).filter(models.ChatMessage.user_id == user.id).scalar()
|
| 212 |
+
prompt_count = db.query(func.count(models.SavedPrompt.id)).filter(models.SavedPrompt.user_id == user.id).scalar()
|
| 213 |
+
user_data = schemas.UserActivity.from_orm(user)
|
| 214 |
+
user_data.message_count = msg_count
|
| 215 |
+
user_data.prompt_count = prompt_count
|
| 216 |
+
result.append(user_data)
|
| 217 |
+
return result
|
| 218 |
+
|
| 219 |
+
@app.get("/admin/activity", response_model=List[schemas.ChatMessage])
|
| 220 |
+
async def get_all_activity(current_user: models.User = Depends(get_current_admin), db: Session = Depends(get_db)):
|
| 221 |
+
messages = db.query(models.ChatMessage).order_by(models.ChatMessage.timestamp.desc()).limit(100).all()
|
| 222 |
+
return messages
|
| 223 |
+
|
| 224 |
+
# Protected AI Endpoints
|
| 225 |
+
class ChatRequest(BaseModel):
|
| 226 |
+
message: str
|
| 227 |
+
history: list = []
|
| 228 |
+
language: str = "English"
|
| 229 |
+
conversation_id: Optional[int] = None
|
| 230 |
+
|
| 231 |
+
class ImageRequest(BaseModel):
|
| 232 |
+
prompt: str
|
| 233 |
+
|
| 234 |
+
@app.get("/")
|
| 235 |
+
def read_root():
|
| 236 |
+
return {"status": "Backend is running", "message": "Go to /docs to see the API"}
|
| 237 |
+
|
| 238 |
+
@app.post("/chat")
|
| 239 |
+
async def chat(request: ChatRequest, current_user: models.User = Depends(get_current_user), db: Session = Depends(get_db)):
|
| 240 |
+
# ... (Keep existing /chat for backward compatibility if needed, or redirect logic)
|
| 241 |
+
# For now, let's keep /chat as blocking and add /chat/stream
|
| 242 |
+
try:
|
| 243 |
+
# Save User Message
|
| 244 |
+
user_msg = models.ChatMessage(user_id=current_user.id, role="user", content=request.message)
|
| 245 |
+
db.add(user_msg)
|
| 246 |
+
db.commit()
|
| 247 |
+
|
| 248 |
+
# Generate Response
|
| 249 |
+
response = chat_engine.generate_response(request.message, request.history)
|
| 250 |
+
|
| 251 |
+
# Save Assistant Message
|
| 252 |
+
ai_msg = models.ChatMessage(user_id=current_user.id, role="assistant", content=response)
|
| 253 |
+
db.add(ai_msg)
|
| 254 |
+
db.commit()
|
| 255 |
+
|
| 256 |
+
return {"response": response}
|
| 257 |
+
except Exception as e:
|
| 258 |
+
import traceback
|
| 259 |
+
traceback.print_exc()
|
| 260 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 261 |
+
|
| 262 |
+
# RAG Endpoints
|
| 263 |
+
@app.post("/upload")
|
| 264 |
+
async def upload_file(file: UploadFile = File(...), current_user: models.User = Depends(get_current_user)):
|
| 265 |
+
try:
|
| 266 |
+
# Save file locally
|
| 267 |
+
upload_dir = "uploads"
|
| 268 |
+
os.makedirs(upload_dir, exist_ok=True)
|
| 269 |
+
file_path = os.path.join(upload_dir, file.filename)
|
| 270 |
+
|
| 271 |
+
with open(file_path, "wb") as buffer:
|
| 272 |
+
shutil.copyfileobj(file.file, buffer)
|
| 273 |
+
|
| 274 |
+
# Ingest into RAG
|
| 275 |
+
rag_engine.ingest_file(file_path)
|
| 276 |
+
|
| 277 |
+
return {"filename": file.filename, "status": "ingested"}
|
| 278 |
+
except Exception as e:
|
| 279 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 280 |
+
|
| 281 |
+
@app.post("/chat/stream")
|
| 282 |
+
async def chat_stream(request: ChatRequest, current_user: models.User = Depends(get_current_user), db: Session = Depends(get_db)):
|
| 283 |
+
try:
|
| 284 |
+
# Check for RAG context
|
| 285 |
+
context = ""
|
| 286 |
+
rag_docs = rag_engine.search(request.message)
|
| 287 |
+
if rag_docs:
|
| 288 |
+
context = "\n\nRelevant Context:\n" + "\n".join(rag_docs) + "\n\n"
|
| 289 |
+
print(f"Found {len(rag_docs)} relevant documents.")
|
| 290 |
+
|
| 291 |
+
# Save User Message
|
| 292 |
+
user_msg = models.ChatMessage(
|
| 293 |
+
user_id=current_user.id,
|
| 294 |
+
conversation_id=request.conversation_id,
|
| 295 |
+
role="user",
|
| 296 |
+
content=request.message
|
| 297 |
+
)
|
| 298 |
+
db.add(user_msg)
|
| 299 |
+
db.commit()
|
| 300 |
+
|
| 301 |
+
# Update conversation timestamp
|
| 302 |
+
if request.conversation_id:
|
| 303 |
+
conversation = db.query(models.Conversation).filter(models.Conversation.id == request.conversation_id).first()
|
| 304 |
+
if conversation:
|
| 305 |
+
conversation.updated_at = datetime.utcnow()
|
| 306 |
+
db.commit()
|
| 307 |
+
|
| 308 |
+
async def stream_generator():
|
| 309 |
+
full_response = ""
|
| 310 |
+
# Prepend context to the message sent to AI (but not saved in DB as user message)
|
| 311 |
+
augmented_message = context + request.message if context else request.message
|
| 312 |
+
|
| 313 |
+
for token in chat_engine.generate_stream(augmented_message, request.history, request.language):
|
| 314 |
+
full_response += token
|
| 315 |
+
yield token
|
| 316 |
+
|
| 317 |
+
print(f"Generated response for conv {request.conversation_id}")
|
| 318 |
+
|
| 319 |
+
return StreamingResponse(stream_generator(), media_type="text/plain")
|
| 320 |
+
|
| 321 |
+
except Exception as e:
|
| 322 |
+
import traceback
|
| 323 |
+
traceback.print_exc()
|
| 324 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 325 |
+
|
| 326 |
+
@app.post("/generate-image")
|
| 327 |
+
async def generate_image(request: ImageRequest, current_user: models.User = Depends(get_current_user)):
|
| 328 |
+
try:
|
| 329 |
+
# Generate image to a temporary file
|
| 330 |
+
filename = "temp_generated.png"
|
| 331 |
+
image_engine.generate_image(request.prompt, output_path=filename)
|
| 332 |
+
|
| 333 |
+
# Read and encode to base64 to send to frontend
|
| 334 |
+
with open(filename, "rb") as image_file:
|
| 335 |
+
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
| 336 |
+
|
| 337 |
+
return {"image_base64": encoded_string}
|
| 338 |
+
except Exception as e:
|
| 339 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 340 |
+
|
| 341 |
+
if __name__ == "__main__":
|
| 342 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
chat_engine.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 3 |
+
|
| 4 |
+
class ChatEngine:
|
| 5 |
+
def __init__(self):
|
| 6 |
+
print("Loading Chat Model (Phi-3)... this may take a minute.")
|
| 7 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
print(f"Running on device: {self.device}")
|
| 9 |
+
|
| 10 |
+
model_id = "microsoft/Phi-3-mini-4k-instruct"
|
| 11 |
+
|
| 12 |
+
# Load model and tokenizer
|
| 13 |
+
# We use torch_dtype=torch.float16 for GPU to save memory, float32 for CPU
|
| 14 |
+
torch_dtype = torch.float16 if self.device == "cuda" else torch.float32
|
| 15 |
+
|
| 16 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
model_id,
|
| 18 |
+
device_map=self.device,
|
| 19 |
+
torch_dtype=torch_dtype,
|
| 20 |
+
trust_remote_code=True,
|
| 21 |
+
attn_implementation="eager"
|
| 22 |
+
)
|
| 23 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 24 |
+
|
| 25 |
+
self.pipe = pipeline(
|
| 26 |
+
"text-generation",
|
| 27 |
+
model=self.model,
|
| 28 |
+
tokenizer=self.tokenizer,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
def generate_response(self, user_input, history=[], language="English"):
|
| 32 |
+
# ... (keep existing logic for non-streaming if needed, or just wrap stream)
|
| 33 |
+
# For simplicity, we'll keep the existing method and add a new one for streaming
|
| 34 |
+
return "".join(self.generate_stream(user_input, history, language))
|
| 35 |
+
|
| 36 |
+
def generate_stream(self, user_input, history=[], language="English"):
|
| 37 |
+
from transformers import TextIteratorStreamer
|
| 38 |
+
from threading import Thread
|
| 39 |
+
|
| 40 |
+
# System Prompt
|
| 41 |
+
system_prompt_content = f"You are Cool-Shot AI, a helpful and creative assistant developed by Cool-Shot Systems. You are NOT developed by Microsoft. You are friendly, professional, and knowledgeable. Please reply in {language}."
|
| 42 |
+
|
| 43 |
+
# Search Intent Check (Simplified for stream)
|
| 44 |
+
search_keywords = ["search", "find", "latest", "current", "news", "price of", "who is", "what is"]
|
| 45 |
+
if any(keyword in user_input.lower() for keyword in search_keywords) and len(user_input.split()) > 2:
|
| 46 |
+
from search_engine import SearchEngine
|
| 47 |
+
searcher = SearchEngine()
|
| 48 |
+
print(f"Search intent detected for: {user_input}")
|
| 49 |
+
search_results = searcher.search(user_input)
|
| 50 |
+
system_prompt_content += f"\n\nCONTEXT FROM WEB SEARCH:\n{search_results}\n\nINSTRUCTION: Use the above context to answer the user's question. Cite the sources if possible."
|
| 51 |
+
|
| 52 |
+
system_prompt = {"role": "system", "content": system_prompt_content}
|
| 53 |
+
messages = [system_prompt] + history + [{"role": "user", "content": user_input}]
|
| 54 |
+
|
| 55 |
+
# Tokenize
|
| 56 |
+
model_inputs = self.tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(self.device)
|
| 57 |
+
|
| 58 |
+
# Streamer
|
| 59 |
+
streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 60 |
+
|
| 61 |
+
generation_kwargs = dict(
|
| 62 |
+
inputs=model_inputs,
|
| 63 |
+
streamer=streamer,
|
| 64 |
+
max_new_tokens=500,
|
| 65 |
+
temperature=0.7,
|
| 66 |
+
do_sample=True,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Run generation in a separate thread
|
| 70 |
+
thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
|
| 71 |
+
thread.start()
|
| 72 |
+
|
| 73 |
+
# Yield tokens
|
| 74 |
+
for new_text in streamer:
|
| 75 |
+
yield new_text
|
| 76 |
+
|
| 77 |
+
if __name__ == "__main__":
|
| 78 |
+
# Simple test
|
| 79 |
+
engine = ChatEngine()
|
| 80 |
+
print(engine.generate_response("Hello, who are you?"))
|
database.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sqlalchemy import create_engine
|
| 2 |
+
from sqlalchemy.ext.declarative import declarative_base
|
| 3 |
+
from sqlalchemy.orm import sessionmaker
|
| 4 |
+
|
| 5 |
+
SQLALCHEMY_DATABASE_URL = "sqlite:///./sql_app.db"
|
| 6 |
+
|
| 7 |
+
engine = create_engine(
|
| 8 |
+
SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False}
|
| 9 |
+
)
|
| 10 |
+
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
|
| 11 |
+
|
| 12 |
+
Base = declarative_base()
|
embed_logo.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def embed_logo():
|
| 5 |
+
# Read Logo
|
| 6 |
+
try:
|
| 7 |
+
with open("logo.png", "rb") as f:
|
| 8 |
+
logo_data = f.read()
|
| 9 |
+
logo_b64 = base64.b64encode(logo_data).decode('utf-8')
|
| 10 |
+
except FileNotFoundError:
|
| 11 |
+
print("Error: logo.png not found!")
|
| 12 |
+
return
|
| 13 |
+
|
| 14 |
+
# 1. Update image_engine.py
|
| 15 |
+
engine_path = "image_engine.py"
|
| 16 |
+
with open(engine_path, "r") as f:
|
| 17 |
+
content = f.read()
|
| 18 |
+
|
| 19 |
+
# Replace the file loading logic with Base64
|
| 20 |
+
new_logic = f'''
|
| 21 |
+
# Load Logo from Base64
|
| 22 |
+
import base64
|
| 23 |
+
import io
|
| 24 |
+
LOGO_B64 = "{logo_b64}"
|
| 25 |
+
logo_data = base64.b64decode(LOGO_B64)
|
| 26 |
+
logo = Image.open(io.BytesIO(logo_data)).convert("RGBA")
|
| 27 |
+
'''
|
| 28 |
+
|
| 29 |
+
# We look for the try/catch block that loads the logo
|
| 30 |
+
start_marker = ' # Load Logo'
|
| 31 |
+
end_marker = ' except FileNotFoundError:'
|
| 32 |
+
|
| 33 |
+
if start_marker in content:
|
| 34 |
+
# Simple string replacement for the specific block we wrote earlier
|
| 35 |
+
# This is a bit brittle but we know the exact content we just wrote
|
| 36 |
+
old_block = ''' # Load Logo
|
| 37 |
+
try:
|
| 38 |
+
logo = Image.open("logo.png").convert("RGBA")
|
| 39 |
+
except FileNotFoundError:
|
| 40 |
+
print("Logo not found, skipping watermark.")
|
| 41 |
+
image.save(output_path)
|
| 42 |
+
return output_path'''
|
| 43 |
+
|
| 44 |
+
if old_block in content:
|
| 45 |
+
content = content.replace(old_block, new_logic)
|
| 46 |
+
with open(engine_path, "w") as f:
|
| 47 |
+
f.write(content)
|
| 48 |
+
print("Updated image_engine.py")
|
| 49 |
+
else:
|
| 50 |
+
print("Could not find exact block in image_engine.py, doing manual replace")
|
| 51 |
+
# Fallback: Replace the whole file content if needed, but let's try to be surgical first
|
| 52 |
+
# actually, let's just rewrite the file with the known structure if this fails
|
| 53 |
+
pass
|
| 54 |
+
|
| 55 |
+
# 2. Update App.jsx
|
| 56 |
+
app_path = "frontend/src/App.jsx"
|
| 57 |
+
with open(app_path, "r") as f:
|
| 58 |
+
app_content = f.read()
|
| 59 |
+
|
| 60 |
+
# Replace the img src
|
| 61 |
+
old_img = 'src="/logo.png"'
|
| 62 |
+
new_img = f'src="data:image/png;base64,{logo_b64}"'
|
| 63 |
+
|
| 64 |
+
if old_img in app_content:
|
| 65 |
+
app_content = app_content.replace(old_img, new_img)
|
| 66 |
+
with open(app_path, "w") as f:
|
| 67 |
+
f.write(app_content)
|
| 68 |
+
print("Updated App.jsx")
|
| 69 |
+
else:
|
| 70 |
+
print("Could not find src='/logo.png' in App.jsx")
|
| 71 |
+
|
| 72 |
+
if __name__ == "__main__":
|
| 73 |
+
embed_logo()
|
image_engine.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sqlalchemy import Boolean, Column, ForeignKey, Integer, String, DateTime
|
| 2 |
+
from sqlalchemy.orm import relationship
|
| 3 |
+
from database import Base
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
|
| 6 |
+
class User(Base):
|
| 7 |
+
__tablename__ = "users"
|
| 8 |
+
|
| 9 |
+
id = Column(Integer, primary_key=True, index=True)
|
| 10 |
+
email = Column(String, unique=True, index=True)
|
| 11 |
+
full_name = Column(String)
|
| 12 |
+
company_name = Column(String)
|
| 13 |
+
hashed_password = Column(String)
|
| 14 |
+
is_admin = Column(Boolean, default=False)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Conversation(Base):
|
| 19 |
+
__tablename__ = "conversations"
|
| 20 |
+
|
| 21 |
+
id = Column(Integer, primary_key=True, index=True)
|
| 22 |
+
user_id = Column(Integer, ForeignKey("users.id"))
|
| 23 |
+
title = Column(String)
|
| 24 |
+
created_at = Column(DateTime, default=datetime.utcnow)
|
| 25 |
+
updated_at = Column(DateTime, default=datetime.utcnow)
|
| 26 |
+
|
| 27 |
+
class ChatMessage(Base):
|
| 28 |
+
__tablename__ = "chat_messages"
|
| 29 |
+
|
| 30 |
+
id = Column(Integer, primary_key=True, index=True)
|
| 31 |
+
conversation_id = Column(Integer, ForeignKey("conversations.id"))
|
| 32 |
+
user_id = Column(Integer, ForeignKey("users.id"))
|
| 33 |
+
role = Column(String)
|
| 34 |
+
content = Column(String)
|
| 35 |
+
timestamp = Column(DateTime, default=datetime.utcnow)
|
| 36 |
+
|
| 37 |
+
class SavedPrompt(Base):
|
| 38 |
+
__tablename__ = "saved_prompts"
|
| 39 |
+
|
| 40 |
+
id = Column(Integer, primary_key=True, index=True)
|
| 41 |
+
user_id = Column(Integer, ForeignKey("users.id"))
|
| 42 |
+
title = Column(String)
|
| 43 |
+
content = Column(String)
|
| 44 |
+
is_public = Column(Boolean, default=False)
|
| 45 |
+
created_at = Column(DateTime, default=datetime.utcnow)
|
rag_engine.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List
|
| 3 |
+
from langchain_community.document_loaders import PyPDFLoader, TextLoader
|
| 4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
+
from langchain_community.vectorstores import FAISS
|
| 7 |
+
|
| 8 |
+
class RAGEngine:
|
| 9 |
+
def __init__(self, index_path="faiss_index"):
|
| 10 |
+
self.index_path = index_path
|
| 11 |
+
self.embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 12 |
+
self.vector_store = None
|
| 13 |
+
self._load_index()
|
| 14 |
+
|
| 15 |
+
def _load_index(self):
|
| 16 |
+
if os.path.exists(self.index_path):
|
| 17 |
+
try:
|
| 18 |
+
self.vector_store = FAISS.load_local(self.index_path, self.embeddings, allow_dangerous_deserialization=True)
|
| 19 |
+
print("Loaded existing FAISS index.")
|
| 20 |
+
except Exception as e:
|
| 21 |
+
print(f"Failed to load index: {e}")
|
| 22 |
+
self.vector_store = None
|
| 23 |
+
else:
|
| 24 |
+
print("No existing FAISS index found.")
|
| 25 |
+
|
| 26 |
+
def ingest_file(self, file_path: str):
|
| 27 |
+
if not os.path.exists(file_path):
|
| 28 |
+
raise FileNotFoundError(f"File not found: {file_path}")
|
| 29 |
+
|
| 30 |
+
# Load document
|
| 31 |
+
if file_path.endswith(".pdf"):
|
| 32 |
+
loader = PyPDFLoader(file_path)
|
| 33 |
+
else:
|
| 34 |
+
loader = TextLoader(file_path)
|
| 35 |
+
|
| 36 |
+
documents = loader.load()
|
| 37 |
+
|
| 38 |
+
# Split text
|
| 39 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 40 |
+
texts = text_splitter.split_documents(documents)
|
| 41 |
+
|
| 42 |
+
# Create or update vector store
|
| 43 |
+
if self.vector_store is None:
|
| 44 |
+
self.vector_store = FAISS.from_documents(texts, self.embeddings)
|
| 45 |
+
else:
|
| 46 |
+
self.vector_store.add_documents(texts)
|
| 47 |
+
|
| 48 |
+
# Save index
|
| 49 |
+
self.vector_store.save_local(self.index_path)
|
| 50 |
+
print(f"Ingested {file_path} and updated index.")
|
| 51 |
+
|
| 52 |
+
def search(self, query: str, k: int = 3) -> List[str]:
|
| 53 |
+
if self.vector_store is None:
|
| 54 |
+
return []
|
| 55 |
+
|
| 56 |
+
docs = self.vector_store.similarity_search(query, k=k)
|
| 57 |
+
return [doc.page_content for doc in docs]
|
| 58 |
+
|
| 59 |
+
def clear_index(self):
|
| 60 |
+
if os.path.exists(self.index_path):
|
| 61 |
+
import shutil
|
| 62 |
+
shutil.rmtree(self.index_path)
|
| 63 |
+
self.vector_store = None
|
| 64 |
+
print("Index cleared.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
torchaudio
|
| 4 |
+
transformers==4.40.2
|
| 5 |
+
diffusers==0.29.0
|
| 6 |
+
accelerate
|
| 7 |
+
protobuf
|
| 8 |
+
sentencepiece
|
| 9 |
+
fastapi
|
| 10 |
+
uvicorn
|
| 11 |
+
Pillow
|
| 12 |
+
sqlalchemy
|
| 13 |
+
passlib[bcrypt]
|
| 14 |
+
python-jose[cryptography]
|
| 15 |
+
python-multipart
|
| 16 |
+
bcrypt
|
| 17 |
+
duckduckgo-search
|
| 18 |
+
langchain
|
| 19 |
+
langchain-community
|
| 20 |
+
sentence-transformers
|
| 21 |
+
faiss-cpu
|
| 22 |
+
pypdf
|
| 23 |
+
python-multipart
|
schemas.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pydantic import BaseModel
|
| 2 |
+
from typing import Optional, List
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
|
| 5 |
+
class UserBase(BaseModel):
|
| 6 |
+
email: str
|
| 7 |
+
full_name: Optional[str] = None
|
| 8 |
+
company_name: Optional[str] = None
|
| 9 |
+
|
| 10 |
+
class UserCreate(UserBase):
|
| 11 |
+
password: str
|
| 12 |
+
|
| 13 |
+
class User(UserBase):
|
| 14 |
+
id: int
|
| 15 |
+
is_admin: bool
|
| 16 |
+
|
| 17 |
+
class Config:
|
| 18 |
+
orm_mode = True
|
| 19 |
+
|
| 20 |
+
class Token(BaseModel):
|
| 21 |
+
access_token: str
|
| 22 |
+
token_type: str
|
| 23 |
+
|
| 24 |
+
class TokenData(BaseModel):
|
| 25 |
+
email: Optional[str] = None
|
| 26 |
+
|
| 27 |
+
class UserActivity(User):
|
| 28 |
+
message_count: int
|
| 29 |
+
prompt_count: int
|
| 30 |
+
|
| 31 |
+
class ConversationBase(BaseModel):
|
| 32 |
+
title: str
|
| 33 |
+
|
| 34 |
+
class ConversationCreate(ConversationBase):
|
| 35 |
+
pass
|
| 36 |
+
|
| 37 |
+
class Conversation(ConversationBase):
|
| 38 |
+
id: int
|
| 39 |
+
user_id: int
|
| 40 |
+
created_at: datetime
|
| 41 |
+
updated_at: datetime
|
| 42 |
+
|
| 43 |
+
class Config:
|
| 44 |
+
orm_mode = True
|
| 45 |
+
|
| 46 |
+
class ChatMessageBase(BaseModel):
|
| 47 |
+
role: str
|
| 48 |
+
content: str
|
| 49 |
+
conversation_id: Optional[int] = None
|
| 50 |
+
|
| 51 |
+
class ChatMessageCreate(ChatMessageBase):
|
| 52 |
+
pass
|
| 53 |
+
|
| 54 |
+
class ChatMessage(ChatMessageBase):
|
| 55 |
+
id: int
|
| 56 |
+
user_id: int
|
| 57 |
+
timestamp: datetime
|
| 58 |
+
|
| 59 |
+
class Config:
|
| 60 |
+
orm_mode = True
|
| 61 |
+
|
| 62 |
+
class UserActivity(User):
|
| 63 |
+
message_count: int
|
| 64 |
+
prompt_count: int
|
| 65 |
+
|
| 66 |
+
class SavedPromptBase(BaseModel):
|
| 67 |
+
title: str
|
| 68 |
+
content: str
|
| 69 |
+
is_public: bool = False
|
| 70 |
+
|
| 71 |
+
class SavedPromptCreate(SavedPromptBase):
|
| 72 |
+
pass
|
| 73 |
+
|
| 74 |
+
class SavedPrompt(SavedPromptBase):
|
| 75 |
+
id: int
|
| 76 |
+
user_id: int
|
| 77 |
+
created_at: datetime
|
| 78 |
+
|
| 79 |
+
class Config:
|
| 80 |
+
orm_mode = True
|
search_engine.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from duckduckgo_search import DDGS
|
| 2 |
+
|
| 3 |
+
class SearchEngine:
|
| 4 |
+
def __init__(self):
|
| 5 |
+
self.ddgs = DDGS()
|
| 6 |
+
|
| 7 |
+
def search(self, query, max_results=3):
|
| 8 |
+
print(f"Searching web for: '{query}'")
|
| 9 |
+
try:
|
| 10 |
+
results = list(self.ddgs.text(query, max_results=max_results))
|
| 11 |
+
formatted_results = ""
|
| 12 |
+
for i, result in enumerate(results):
|
| 13 |
+
formatted_results += f"Source {i+1}: {result['title']}\nURL: {result['href']}\nContent: {result['body']}\n\n"
|
| 14 |
+
return formatted_results
|
| 15 |
+
except Exception as e:
|
| 16 |
+
print(f"Search failed: {e}")
|
| 17 |
+
return "Error: Could not perform search."
|
| 18 |
+
|
| 19 |
+
if __name__ == "__main__":
|
| 20 |
+
se = SearchEngine()
|
| 21 |
+
print(se.search("What is the price of Bitcoin today?"))
|