File size: 9,379 Bytes
cd9cc66
55750be
4151903
fffb78c
c6914e7
4151903
 
 
fc7b4e3
4151903
55750be
 
 
 
4151903
55750be
cd9cc66
448b0e7
 
 
 
 
 
 
fffb78c
 
 
 
c6914e7
cd9cc66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fffb78c
 
 
55750be
4151903
 
 
 
 
 
 
 
 
 
 
c0b713d
3b1a54d
 
 
 
 
 
4151903
 
fffb78c
4151903
 
 
 
 
 
 
 
 
 
cd9cc66
55750be
3b1a54d
cd9cc66
3b1a54d
 
 
 
4151903
cd9cc66
 
 
4151903
3b1a54d
 
cd9cc66
3b1a54d
fffb78c
cd9cc66
3b1a54d
fffb78c
 
 
3b1a54d
fffb78c
3b1a54d
fffb78c
3b1a54d
 
fffb78c
3b1a54d
fffb78c
3b1a54d
cd9cc66
 
 
 
 
 
 
3b1a54d
fffb78c
3b1a54d
cd9cc66
3b1a54d
fffb78c
 
 
3b1a54d
fffb78c
3b1a54d
fffb78c
3b1a54d
 
fffb78c
3b1a54d
fffb78c
3b1a54d
fffb78c
3b1a54d
fffb78c
3b1a54d
 
55750be
4151903
 
683b0a0
 
4151903
 
 
 
3b1a54d
683b0a0
4151903
55750be
 
 
c0b713d
4151903
 
 
 
 
c0b713d
 
 
 
 
cd9cc66
c0b713d
 
 
 
 
26c02e3
c0b713d
 
cd9cc66
c0b713d
 
f5ffb8a
c0b713d
 
 
 
 
 
 
 
cd9cc66
f5ffb8a
c0b713d
 
 
f5ffb8a
cd9cc66
c0b713d
cd9cc66
a0b4a31
489d5dc
55750be
cd9cc66
c0b713d
 
a0b4a31
c0b713d
 
489d5dc
4151903
 
a0b8bba
683b0a0
cd9cc66
4151903
 
c0b713d
 
 
fffb78c
4151903
683b0a0
 
 
 
 
cd9cc66
683b0a0
a0b4a31
cd9cc66
683b0a0
 
 
 
 
 
 
 
 
 
 
4151903
fffb78c
cd9cc66
4151903
 
3b1a54d
4151903
 
 
cd9cc66
55750be
 
fc7b4e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os, re, torch, gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from IndicTransToolkit import IndicProcessor
import spacy

# --------------------- Device ---------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# --------------------- Languages ------------------
SRC_CODE = "eng_Latn"
HI_CODE  = "hin_Deva"
TE_CODE  = "tel_Telu"

ip = IndicProcessor(inference=True)

# --------------------- spaCy Sentence Splitter ---------------------
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    from spacy.cli import download
    download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")

def split_into_sentences(text):
    """Split English text into sentences using spaCy."""
    doc = nlp(text.strip())
    return [sent.text.strip() for sent in doc.sents if sent.text.strip()]

# --------------------- Abbreviation Expansion ---------------------
ABBREVIATION_MAP = {
    "subs.": "subsection",
    "cl.": "clause",
    "art.": "article",
    "sec.": "section",
    "s.": "section",
    "no.": "number",
    "sch.": "schedule",
    "para.": "paragraph",
    "r.": "rule",
    "reg.": "regulation",
    "dept.": "department",
}

_ABBR_PATTERN = re.compile(
    r'(?<![A-Za-z])(' + '|'.join(re.escape(k) for k in ABBREVIATION_MAP.keys()) + r')(?=\s*(?:\(|\d|[A-Z]|[a-z]))',
    flags=re.IGNORECASE
)

def expand_abbreviations(text: str) -> str:
    """Replace known abbreviations with full forms safely (without affecting natural words)."""
    def replacer(match):
        key = match.group(0)
        repl = ABBREVIATION_MAP.get(key.lower(), key)
        if key.isupper():
            return repl.upper()
        elif key[0].isupper():
            return repl.capitalize()
        return repl
    return _ABBR_PATTERN.sub(replacer, text)

# --------------------- Clean Up Placeholder Tags ---------------------
def clean_translation(text):
    """Remove unresolved placeholder tags such as <ID1>, <ID2>."""
    return re.sub(r"<ID\d+>", "", text).strip()

# --------------------- Model Loader ---------------------
MODELS = {
    "Default (Public)": "law-ai/InLegalTrans-En2Indic-1B",
    "Fine-tuned (Private)": "SagarVelamuri/InLegalTrans-En2Indic-FineTuned-Tel-Hin"
}

_model_cache = {}

def load_model(model_name: str):
    if model_name in _model_cache:
        return _model_cache[model_name]

    token = os.getenv("hf_token")

    tok = AutoTokenizer.from_pretrained(
        "ai4bharat/indictrans2-en-indic-1B",
        trust_remote_code=True, use_fast=True
    )
    mdl = AutoModelForSeq2SeqLM.from_pretrained(
        model_name, trust_remote_code=True,
        low_cpu_mem_usage=True, dtype=dtype, token=token
    ).to(device).eval()

    try:
        mdl.config.vocab_size = mdl.get_output_embeddings().weight.shape[0]
    except Exception:
        pass

    _model_cache[model_name] = (tok, mdl)
    return tok, mdl

# --------------------- Translation ---------------------
@torch.inference_mode()
def translate_dual_stream(text, model_choice, num_beams, max_new):
    """Stream Hindi and Telugu translations, one sentence at a time."""
    if not text or not text.strip():
        yield "", ""
        return

    tok, mdl = load_model(MODELS[model_choice])

    # Expand known abbreviations
    text = expand_abbreviations(text)
    sentences = split_into_sentences(text)
    hi_acc, te_acc = [], []

    yield "", ""  # Clear UI early

    for i, sentence in enumerate(sentences, 1):
        # --- Hindi ---
        try:
            batch_hi = ip.preprocess_batch([sentence], src_lang=SRC_CODE, tgt_lang=HI_CODE)
            enc_hi = tok(batch_hi, max_length=256, truncation=True, padding=True, return_tensors="pt").to(device)
            out_hi = mdl.generate(
                **enc_hi,
                max_length=int(max_new),
                num_beams=int(num_beams),
                do_sample=False,
                early_stopping=True,
                no_repeat_ngram_size=3,
                use_cache=False
            )
            dec_hi = tok.batch_decode(out_hi, skip_special_tokens=True, clean_up_tokenization_spaces=True)
            post_hi = ip.postprocess_batch(dec_hi, lang=HI_CODE)
            hi_text = clean_translation(post_hi[0])

            # Optionally ensure danda for Hindi if missing
            if not re.search(r"[।?!…]$", hi_text):
                hi_text += "।"

            hi_acc.append(hi_text)
        except Exception as e:
            hi_acc.append(f"⚠️ Hindi failed (sentence {i}): {e}")

        # --- Telugu ---
        try:
            batch_te = ip.preprocess_batch([sentence], src_lang=SRC_CODE, tgt_lang=TE_CODE)
            enc_te = tok(batch_te, max_length=256, truncation=True, padding=True, return_tensors="pt").to(device)
            out_te = mdl.generate(
                **enc_te,
                max_length=int(max_new),
                num_beams=int(num_beams),
                do_sample=False,
                early_stopping=True,
                no_repeat_ngram_size=3,
                use_cache=False
            )
            dec_te = tok.batch_decode(out_te, skip_special_tokens=True, clean_up_tokenization_spaces=True)
            post_te = ip.postprocess_batch(dec_te, lang=TE_CODE)
            te_acc.append(clean_translation(post_te[0]))
        except Exception as e:
            te_acc.append(f"⚠️ Telugu failed (sentence {i}): {e}")

        yield (" ".join(hi_acc), " ".join(te_acc))

# --------------------- Dark Theme ---------------------
THEME = gr.themes.Soft(
    primary_hue="blue", neutral_hue="slate"
).set(
    body_background_fill="#0b0f19",
    body_text_color="#f3f4f6",
    block_background_fill="#111827",
    block_border_color="#1f2937",
    block_title_text_color="#123456",
    button_primary_background_fill="#2563eb",
    button_primary_text_color="#ffffff",
)

CUSTOM_CSS = """
/* Header + Panels */
#hdr { text-align:center; padding:16px; }
#hdr h1 { font-size:24px; font-weight:700; color:#f9fafb; margin:0; }
#hdr p { font-size:14px; color:#9ca3af; margin-top:4px; }
.panel { border:1px solid #1f2937; border-radius:10px; padding:12px; background:#111827; box-shadow:0 1px 2px rgba(0,0,0,0.4);}
.panel h2 { font-size:16px; font-weight:600; margin-bottom:6px; color:#f3f4f6; }

/* Inputs */
textarea { background:#0b0f19 !important; color:#f9fafb !important; border-radius:8px !important; border:1px solid #374151 !important; font-size:15px !important; line-height:1.55; }
button { border-radius:8px !important; font-weight:600 !important; }

/* Labels */
.gradio-container label,
.gradio-container .label,
.gradio-container .block-title,
.gradio-container .prose h2,
.gradio-container .prose h3 {
  color:#093999 !important;
}

/* Dropdown Styling */
#model_dd .wrap,
#model_dd .container {
  background:#111827 !important;
  border:1px solid #374151 !important;
  border-radius:8px !important;
}
#model_dd input,
#model_dd .value,
#model_dd ::placeholder,
#model_dd select,
#model_dd option {
  color:#ffffff!important;
  background:#111827 !important;
}
#model_dd .options,
#model_dd .options .item {
  background:#111827 !important;
  color:#ffffff !important;
}
#model_dd label {
  color:#efe4b0 !important;
}

/* Slider labels */
.gradio-container .range-block label,
.gradio-container .gr-slider label {
  color:#efe4b0 !important;
}
"""

# --------------------- UI ---------------------
with gr.Blocks(theme=THEME, css=CUSTOM_CSS, title="EN → HI/TE Translator") as demo:
    with gr.Group(elem_id="hdr"):
        gr.Markdown("<h1>English → Hindi & Telugu Translator</h1>")
        gr.Markdown("<p>IndicTrans2 with abbreviation expansion and sentence-wise translation</p>")

    model_choice = gr.Dropdown(
        label="Choose Model",
        choices=list(MODELS.keys()),
        value="Default (Public)",
        elem_id="model_dd"
    )

    with gr.Row():
        with gr.Column(scale=2):
            with gr.Group(elem_classes="panel"):
                gr.Markdown("<h2>English Input</h2>")
                src = gr.Textbox(lines=12, placeholder="Enter English text...", show_label=False)
            with gr.Row():
                translate_btn = gr.Button("Translate", variant="primary")
                clear_btn = gr.Button("Clear", variant="secondary")

        with gr.Column(scale=2):
            with gr.Group(elem_classes="panel"):
                gr.Markdown("<h2>Hindi Translation</h2>")
                hi_out = gr.Textbox(lines=6, show_copy_button=True, show_label=False)
            with gr.Group(elem_classes="panel"):
                gr.Markdown("<h2>Telugu Translation</h2>")
                te_out = gr.Textbox(lines=6, show_copy_button=True, show_label=False)

        with gr.Column(scale=1):
            with gr.Group(elem_classes="panel"):
                gr.Markdown("<h2>Settings</h2>")
                num_beams = gr.Slider(1, 8, value=4, step=1, label="Beam Search", elem_id="model_dd")
                max_new = gr.Slider(32, 512, value=128, step=16, label="Max New Tokens", elem_id="model_dd")

    translate_btn.click(
        translate_dual_stream,
        inputs=[src, model_choice, num_beams, max_new],
        outputs=[hi_out, te_out]
    )

    clear_btn.click(lambda: ("", "", ""), outputs=[src, hi_out, te_out])

demo.queue(max_size=48).launch()