Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,36 +23,124 @@
|
|
| 23 |
|
| 24 |
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
import easyocr
|
| 27 |
import cv2
|
| 28 |
import requests
|
| 29 |
import re
|
| 30 |
from PIL import Image
|
| 31 |
import streamlit as st
|
| 32 |
-
|
| 33 |
-
|
| 34 |
|
| 35 |
# Load the EasyOCR reader
|
| 36 |
reader = easyocr.Reader(['en'])
|
| 37 |
|
| 38 |
-
|
| 39 |
-
# key=os.environ.getattribute("api_key")
|
| 40 |
-
# print(key)
|
| 41 |
API_URL = "https://api-inference.huggingface.co/models/flair/ner-english-large"
|
| 42 |
headers = {"Authorization": st.secrets["api_key"]}
|
| 43 |
|
| 44 |
## Image uploading function ##
|
| 45 |
-
def image_upload_and_ocr(reader):
|
| 46 |
-
uploaded_file=st.file_uploader(label=':red[**please upload a busines card** :sunglasses:]',type=['jpeg','jpg','png','webp'])
|
| 47 |
if uploaded_file is not None:
|
| 48 |
-
image=Image.open(uploaded_file)
|
| 49 |
-
image=image.resize((640,480))
|
| 50 |
-
|
| 51 |
-
#
|
|
|
|
| 52 |
texts = [item[1] for item in result2]
|
| 53 |
-
result=' '.join(texts)
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
| 56 |
|
| 57 |
def query(payload):
|
| 58 |
response = requests.post(API_URL, headers=headers, json=payload)
|
|
@@ -70,42 +158,202 @@ def get_ner_from_transformer(output):
|
|
| 70 |
|
| 71 |
named_entities[entity_type].append(entity_text)
|
| 72 |
|
| 73 |
-
|
| 74 |
-
# print(f"{entity_type}: {', '.join(entities)}")
|
| 75 |
-
return entity_type,named_entities
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
def drawing_detection(image):
|
| 82 |
# Draw bounding boxes around the detected text regions
|
| 83 |
-
for detection in
|
| 84 |
# Extract the bounding box coordinates
|
| 85 |
points = detection[0] # List of points defining the bounding box
|
| 86 |
x1, y1 = int(points[0][0]), int(points[0][1]) # Top-left corner
|
| 87 |
x2, y2 = int(points[2][0]), int(points[2][1]) # Bottom-right corner
|
| 88 |
|
| 89 |
# Draw the bounding box
|
| 90 |
-
cv2.rectangle(
|
| 91 |
|
| 92 |
# Add the detected text
|
| 93 |
text = detection[1]
|
| 94 |
-
cv2.putText(
|
| 95 |
-
|
| 96 |
-
|
|
|
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
st.write(
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
|
| 26 |
+
# import easyocr
|
| 27 |
+
# import cv2
|
| 28 |
+
# import requests
|
| 29 |
+
# import re
|
| 30 |
+
# from PIL import Image
|
| 31 |
+
# import streamlit as st
|
| 32 |
+
# # import os
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# # Load the EasyOCR reader
|
| 36 |
+
# reader = easyocr.Reader(['en'])
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# # key=os.environ.getattribute("api_key")
|
| 40 |
+
# # print(key)
|
| 41 |
+
# API_URL = "https://api-inference.huggingface.co/models/flair/ner-english-large"
|
| 42 |
+
# headers = {"Authorization": st.secrets["api_key"]}
|
| 43 |
+
|
| 44 |
+
# ## Image uploading function ##
|
| 45 |
+
# def image_upload_and_ocr(reader):
|
| 46 |
+
# uploaded_file=st.file_uploader(label=':red[**please upload a busines card** :sunglasses:]',type=['jpeg','jpg','png','webp'])
|
| 47 |
+
# if uploaded_file is not None:
|
| 48 |
+
# image=Image.open(uploaded_file)
|
| 49 |
+
# image=image.resize((640,480))
|
| 50 |
+
# result2 = reader.readtext(image)
|
| 51 |
+
# # result2=result
|
| 52 |
+
# texts = [item[1] for item in result2]
|
| 53 |
+
# result=' '.join(texts)
|
| 54 |
+
# return result2,result
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# def query(payload):
|
| 58 |
+
# response = requests.post(API_URL, headers=headers, json=payload)
|
| 59 |
+
# return response.json()
|
| 60 |
+
|
| 61 |
+
# def get_ner_from_transformer(output):
|
| 62 |
+
# data = output
|
| 63 |
+
# named_entities = {}
|
| 64 |
+
# for entity in data:
|
| 65 |
+
# entity_type = entity['entity_group']
|
| 66 |
+
# entity_text = entity['word']
|
| 67 |
+
|
| 68 |
+
# if entity_type not in named_entities:
|
| 69 |
+
# named_entities[entity_type] = []
|
| 70 |
+
|
| 71 |
+
# named_entities[entity_type].append(entity_text)
|
| 72 |
+
|
| 73 |
+
# # for entity_type, entities in named_entities.items():
|
| 74 |
+
# # print(f"{entity_type}: {', '.join(entities)}")
|
| 75 |
+
# return entity_type,named_entities
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# ### DRAWING DETECTION FUNCTION ###
|
| 81 |
+
# def drawing_detection(image):
|
| 82 |
+
# # Draw bounding boxes around the detected text regions
|
| 83 |
+
# for detection in image:
|
| 84 |
+
# # Extract the bounding box coordinates
|
| 85 |
+
# points = detection[0] # List of points defining the bounding box
|
| 86 |
+
# x1, y1 = int(points[0][0]), int(points[0][1]) # Top-left corner
|
| 87 |
+
# x2, y2 = int(points[2][0]), int(points[2][1]) # Bottom-right corner
|
| 88 |
+
|
| 89 |
+
# # Draw the bounding box
|
| 90 |
+
# cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 91 |
+
|
| 92 |
+
# # Add the detected text
|
| 93 |
+
# text = detection[1]
|
| 94 |
+
# cv2.putText(image, text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
|
| 95 |
+
# st.image(image,caption='Detected text on the card ',width=710)
|
| 96 |
+
# return image
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# st.title("_Business_ card data extractor using opencv and streamlit :sunglasses:")
|
| 101 |
+
# res2,res=image_upload_and_ocr(reader)
|
| 102 |
+
# darwing_image=drawing_detection(res2)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# output = query({
|
| 106 |
+
# "inputs": res,
|
| 107 |
+
# })
|
| 108 |
+
|
| 109 |
+
# entity_type,named_entities= get_ner_from_transformer(output)
|
| 110 |
+
# st.write(entity_type)
|
| 111 |
+
# st.write(named_entities)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
import easyocr
|
| 117 |
import cv2
|
| 118 |
import requests
|
| 119 |
import re
|
| 120 |
from PIL import Image
|
| 121 |
import streamlit as st
|
| 122 |
+
import numpy as np
|
|
|
|
| 123 |
|
| 124 |
# Load the EasyOCR reader
|
| 125 |
reader = easyocr.Reader(['en'])
|
| 126 |
|
|
|
|
|
|
|
|
|
|
| 127 |
API_URL = "https://api-inference.huggingface.co/models/flair/ner-english-large"
|
| 128 |
headers = {"Authorization": st.secrets["api_key"]}
|
| 129 |
|
| 130 |
## Image uploading function ##
|
| 131 |
+
def image_upload_and_ocr(reader, uploaded_file):
|
|
|
|
| 132 |
if uploaded_file is not None:
|
| 133 |
+
image = Image.open(uploaded_file)
|
| 134 |
+
image = image.resize((640, 480))
|
| 135 |
+
|
| 136 |
+
image_np = np.array(image) # Convert image to NumPy array
|
| 137 |
+
result2 = reader.readtext(image_np)
|
| 138 |
texts = [item[1] for item in result2]
|
| 139 |
+
result = ' '.join(texts)
|
| 140 |
+
|
| 141 |
+
return result2, result, image
|
| 142 |
+
else:
|
| 143 |
+
return None, None, None
|
| 144 |
|
| 145 |
def query(payload):
|
| 146 |
response = requests.post(API_URL, headers=headers, json=payload)
|
|
|
|
| 158 |
|
| 159 |
named_entities[entity_type].append(entity_text)
|
| 160 |
|
| 161 |
+
return entity_type, named_entities
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
def drawing_detection(res2, image):
|
| 164 |
+
cv2_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
|
|
|
| 165 |
# Draw bounding boxes around the detected text regions
|
| 166 |
+
for detection in res2:
|
| 167 |
# Extract the bounding box coordinates
|
| 168 |
points = detection[0] # List of points defining the bounding box
|
| 169 |
x1, y1 = int(points[0][0]), int(points[0][1]) # Top-left corner
|
| 170 |
x2, y2 = int(points[2][0]), int(points[2][1]) # Bottom-right corner
|
| 171 |
|
| 172 |
# Draw the bounding box
|
| 173 |
+
cv2.rectangle(cv2_image, (x1, y1), (x2, y2), (255, 0, 0), 1)
|
| 174 |
|
| 175 |
# Add the detected text
|
| 176 |
text = detection[1]
|
| 177 |
+
cv2.putText(cv2_image, text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
|
| 178 |
+
|
| 179 |
+
st.image(cv2_image, caption='Detected text on the card', width=710)
|
| 180 |
+
return cv2_image
|
| 181 |
|
| 182 |
+
# Function to extract phone numbers from text using regular expression
|
| 183 |
+
def extract_phone_numbers(text):
|
| 184 |
+
# Regular expression pattern for detecting phone numbers
|
| 185 |
+
PHONE_PATTERN = r'(?:ph|phone|phno)?\s*(?:[+-]?\d\s*[\(\)]*){7,}'
|
| 186 |
|
| 187 |
+
# Find phone numbers using regular expression
|
| 188 |
+
phone_numbers = re.findall(PHONE_PATTERN, text, re.IGNORECASE)
|
| 189 |
+
# Return the extracted phone numbers
|
| 190 |
+
return phone_numbers or None
|
| 191 |
|
| 192 |
+
# Function to extract email addresses from text using regular expression
|
| 193 |
+
def extract_email(text):
|
| 194 |
+
emails = []
|
| 195 |
+
# Regular expression pattern for detecting email addresses with variations
|
| 196 |
+
reg = r'[a-z0-9_.-]+(?:\s*@\s*)[a-z]+(?:\s*\.?\s*[a-z]{2,3})\s*'
|
| 197 |
+
# Find email addresses using regular expression
|
| 198 |
+
res = re.findall(reg, text, re.IGNORECASE)
|
| 199 |
+
# Print the extracted email addresses
|
| 200 |
+
for email in res:
|
| 201 |
+
emails.append(email.strip())
|
| 202 |
+
return emails or None
|
| 203 |
|
| 204 |
+
# Function to extract designations from text using regular expression
|
| 205 |
+
def extract_designation(text):
|
| 206 |
+
designations = []
|
| 207 |
+
# Regular expression pattern for detecting designations
|
| 208 |
+
designation_regex = r'\b(?:CEO|CFO|CTO|COO|CMO|CIO|President|Vice\s?President|Director|Manager|Executive\s?Director|Assistant\s?Manager|Account\s?Manager|Sales\s?Manager|Marketing\s?Manager|Product\s?Manager|Project\s?Manager|HR\s?Manager|Human\s?Resources\s?Manager|Operations\s?Manager|Business\s?Development\s?Manager|Senior\s?Manager|General\s?Manager|Team\s?Lead|Consultant|Analyst|Engineer|Architect|Designer|Developer|Programmer|Coordinator|Specialist|Supervisor|Administrator|Assistant|Associate|Partner|Founder|Owner|Principal|Expert|Technician|Officer|Representative|Agent|Accountant|Auditor|Trainer|Coach|Educator|Professor|Instructor|Researcher|Scientist|Doctor|Nurse|Therapist|Pharmacist|Attorney|Lawyer|Legal\s?Counsel|Paralegal|Advocate|Solicitor|Notary|Financial\s?Advisor|Investment\s?Advisor|Wealth\s?Manager|Broker|Realtor|Mortgage\s?Broker|Insurance\s?Agent)\b'
|
| 209 |
+
|
| 210 |
+
# Find designations using regular expression
|
| 211 |
+
designations = re.findall(designation_regex, text, re.IGNORECASE)
|
| 212 |
+
|
| 213 |
+
return designations or None
|
| 214 |
+
|
| 215 |
+
# Function to extract website URLs from text using regular expression
|
| 216 |
+
def extract_websites(text):
|
| 217 |
+
websites_found=[]
|
| 218 |
+
pattern = r'(https?://)?(www\.)?(\w+)(\.\w+)+'
|
| 219 |
+
websites = re.findall(pattern, text)
|
| 220 |
+
return ["".join(website) for website in websites] or None
|
| 221 |
+
|
| 222 |
+
# Function to extract PIN codes from text using regular expression
|
| 223 |
+
def extract_pin_code(text):
|
| 224 |
+
pin_code_pattern = r'\b\d{6}\b'
|
| 225 |
+
pin_code_match = re.search(pin_code_pattern, text.lower())
|
| 226 |
+
|
| 227 |
+
# Retrieve the PIN code if found
|
| 228 |
+
if pin_code_match:
|
| 229 |
+
pin_code = pin_code_match.group()
|
| 230 |
+
return pin_code
|
| 231 |
+
else:
|
| 232 |
+
return None
|
| 233 |
+
|
| 234 |
+
import pandas as pd
|
| 235 |
+
|
| 236 |
+
# Streamlit UI
|
| 237 |
+
st.title("Business Card Data Extractor using OpenCV and Streamlit")
|
| 238 |
+
|
| 239 |
+
uploaded_file = st.file_uploader(label="Please upload a business card", type=['jpeg', 'jpg', 'png', 'webp'], accept_multiple_files=False)
|
| 240 |
+
|
| 241 |
+
if uploaded_file is not None:
|
| 242 |
+
res2, res, image = image_upload_and_ocr(reader, uploaded_file)
|
| 243 |
+
|
| 244 |
+
if res2 is not None:
|
| 245 |
+
drawing_image = drawing_detection(res2, image)
|
| 246 |
+
|
| 247 |
+
try:
|
| 248 |
+
output = query({
|
| 249 |
+
"inputs": res,
|
| 250 |
+
})
|
| 251 |
+
|
| 252 |
+
entity_type, named_entities = get_ner_from_transformer(output)
|
| 253 |
+
except Exception as e:
|
| 254 |
+
st.error("An error occurred while processing the business card. Please try again later.")
|
| 255 |
+
st.error(f"Error details: {str(e)}")
|
| 256 |
+
|
| 257 |
+
extracted_data = {}
|
| 258 |
+
|
| 259 |
+
# Function to extract person's name
|
| 260 |
+
# Assuming the person's name is extracted by NER
|
| 261 |
+
names = named_entities.get("PER", [])
|
| 262 |
+
if names:
|
| 263 |
+
selected_name = st.selectbox("Select Person's Name:", [""] + names)
|
| 264 |
+
if selected_name:
|
| 265 |
+
extracted_data["Name"] = selected_name
|
| 266 |
+
else:
|
| 267 |
+
manual_name = st.text_input("Enter Person's Name manually:")
|
| 268 |
+
if manual_name:
|
| 269 |
+
extracted_data["Name"] = manual_name
|
| 270 |
+
|
| 271 |
+
# Function to extract designations
|
| 272 |
+
designations = extract_designation(res)
|
| 273 |
+
if designations is not None:
|
| 274 |
+
selected_designation = st.selectbox("Select Designation:", [""] + designations)
|
| 275 |
+
if selected_designation:
|
| 276 |
+
extracted_data["Designation"] = selected_designation
|
| 277 |
+
else:
|
| 278 |
+
manual_designation = st.text_input("Enter Designation manually:")
|
| 279 |
+
if manual_designation:
|
| 280 |
+
extracted_data["Designation"] = manual_designation
|
| 281 |
+
|
| 282 |
+
# Function to extract company names
|
| 283 |
+
# Assuming the organization names extracted by NER represent company names
|
| 284 |
+
company_names = named_entities.get("ORG", [])
|
| 285 |
+
if company_names:
|
| 286 |
+
selected_company_name = st.selectbox("Select Company Name:", [""] + company_names)
|
| 287 |
+
if selected_company_name:
|
| 288 |
+
extracted_data["Company Name"] = selected_company_name
|
| 289 |
+
else:
|
| 290 |
+
manual_company_name = st.text_input("Enter Company Name manually:")
|
| 291 |
+
if manual_company_name:
|
| 292 |
+
extracted_data["Company Name"] = manual_company_name
|
| 293 |
+
|
| 294 |
+
# Function to extract email addresses
|
| 295 |
+
emails = extract_email(res)
|
| 296 |
+
if emails is not None:
|
| 297 |
+
selected_email = st.selectbox("Select Email:", [""] + emails)
|
| 298 |
+
if selected_email:
|
| 299 |
+
extracted_data["Email"] = selected_email
|
| 300 |
+
else:
|
| 301 |
+
manual_email = st.text_input("Enter Email manually:")
|
| 302 |
+
if manual_email:
|
| 303 |
+
extracted_data["Email"] = manual_email
|
| 304 |
+
|
| 305 |
+
# Function to extract website URLs
|
| 306 |
+
websites = extract_websites(res)
|
| 307 |
+
if websites is not None:
|
| 308 |
+
selected_website = st.selectbox("Select Website:", [""] + websites)
|
| 309 |
+
if selected_website:
|
| 310 |
+
extracted_data["Website"] = selected_website
|
| 311 |
+
else:
|
| 312 |
+
manual_website = st.text_input("Enter Website manually:")
|
| 313 |
+
if manual_website:
|
| 314 |
+
extracted_data["Website"] = manual_website
|
| 315 |
+
|
| 316 |
+
# Function to extract phone numbers
|
| 317 |
+
phone_numbers = extract_phone_numbers(res)
|
| 318 |
+
if phone_numbers is not None:
|
| 319 |
+
selected_phone_number = st.selectbox("Select Phone Number:", [""] + phone_numbers)
|
| 320 |
+
if selected_phone_number:
|
| 321 |
+
extracted_data["Phone Number"] = selected_phone_number
|
| 322 |
+
else:
|
| 323 |
+
manual_phone_number = st.text_input("Enter Phone Number manually:")
|
| 324 |
+
if manual_phone_number:
|
| 325 |
+
extracted_data["Phone Number"] = manual_phone_number
|
| 326 |
+
|
| 327 |
+
# Concatenate all the text returned by the API for location
|
| 328 |
+
locations = named_entities.get("LOC", [])
|
| 329 |
+
if locations:
|
| 330 |
+
concatenated_location = ", ".join(locations)
|
| 331 |
+
selected_location = st.selectbox("Select Location:", [""] + [concatenated_location])
|
| 332 |
+
if selected_location:
|
| 333 |
+
extracted_data["Location"] = selected_location
|
| 334 |
+
else:
|
| 335 |
+
manual_location = st.text_input("Enter Location manually:")
|
| 336 |
+
if manual_location:
|
| 337 |
+
extracted_data["Location"] = manual_location
|
| 338 |
+
else:
|
| 339 |
+
manual_location = st.text_input("Enter Location manually:")
|
| 340 |
+
if manual_location:
|
| 341 |
+
extracted_data["Location"] = manual_location
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
# Function to extract PIN codes
|
| 345 |
+
pin_code = extract_pin_code(res)
|
| 346 |
+
if pin_code is not None:
|
| 347 |
+
selected_pin_code = st.selectbox("Select PIN Code:", ["", pin_code])
|
| 348 |
+
if selected_pin_code:
|
| 349 |
+
extracted_data["PIN Code"] = selected_pin_code
|
| 350 |
+
else:
|
| 351 |
+
manual_pin_code = st.text_input("Enter PIN Code manually:")
|
| 352 |
+
if manual_pin_code:
|
| 353 |
+
extracted_data["PIN Code"] = manual_pin_code
|
| 354 |
|
| 355 |
+
# Display extracted data
|
| 356 |
+
if extracted_data:
|
| 357 |
+
st.write("Extracted Data:")
|
| 358 |
+
df = pd.DataFrame([extracted_data], columns=["Name", "Designation", "Company Name", "Email", "Website", "Phone Number", "Location", "PIN Code"])
|
| 359 |
+
st.write(df)
|