saree_matching / app.py
Sid26Roy's picture
Update app.py
f24509f verified
import os, json, joblib
import numpy as np
import cv2
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from sklearn.preprocessing import normalize
from sklearn.neighbors import NearestNeighbors
import gradio as gr
from PIL import Image
import pickle
from skimage.color import rgb2lab, lab2rgb
from skimage.feature import local_binary_pattern, hog
from sklearn.cluster import KMeans
# ---------------- CONFIG ----------------
ARTIFACTS_DIR = "."
FEATURES_PATH = os.path.join(ARTIFACTS_DIR, "features.npy")
PATHS_PATH = os.path.join(ARTIFACTS_DIR, "image_paths.json")
PALETTES_PATH = os.path.join(ARTIFACTS_DIR, "palettes.json")
INDEX_PATH = os.path.join(ARTIFACTS_DIR, "nn_index.joblib")
MODEL_PATH = os.path.join(ARTIFACTS_DIR, "resnet50_multilayer_ssl.pt")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
GDRIVE_FOLDER = "https://drive.google.com/drive/folders/10EXzo27vuTjyG9FXHWWO4J5AhVQhyUp9?usp=sharing"
# ---------------- LOAD ARTIFACTS ----------------
features = np.load(FEATURES_PATH)
with open(PATHS_PATH, "r") as f:
IMG_PATHS = json.load(f)
with open(PALETTES_PATH, "r") as f:
DATA_PALETTES = json.load(f)
nn_index = joblib.load(INDEX_PATH)
with open("kmeans.pkl", "rb") as f:
kmeans = pickle.load(f)
with open("kmeans.pkl", "rb") as f:
fitted_kmeans = pickle.load(f)
# ---------------- FEATURE CLASSES ----------------
class AutoColor:
def __init__(self, n_colors=5, sample_px=150000, random_state=42):
self.n_colors = n_colors
self.sample_px = sample_px
self.random_state = random_state
def extract(self, arr: np.ndarray):
lab = rgb2lab(arr / 255.0).reshape(-1, 3)
if lab.shape[0] > self.sample_px:
idx = np.random.RandomState(self.random_state).choice(
lab.shape[0], self.sample_px, replace=False
)
lab = lab[idx]
kmeans = KMeans(n_clusters=self.n_colors, random_state=self.random_state, n_init=8)
kmeans.fit(lab)
centers = kmeans.cluster_centers_
labels = kmeans.labels_
counts = np.bincount(labels, minlength=self.n_colors).astype(np.float32)
props = counts / counts.sum()
return centers, props
def vectorize(self, centers, props):
return np.concatenate([centers.flatten(), props]).astype(np.float32)
class TextureBank:
def __init__(self):
self.lbp_settings = [(8, 1), (8, 2), (16, 3)]
self.gabor_kernels = []
for theta in np.linspace(0, np.pi, 6, endpoint=False):
for sigma in (1.0, 2.0, 3.0):
for lambd in (3.0, 6.0, 9.0):
kern = cv2.getGaborKernel((9, 9), sigma, theta, lambd, gamma=0.5, psi=0)
self.gabor_kernels.append(kern)
def extract(self, arr: np.ndarray):
gray = cv2.cvtColor(arr, cv2.COLOR_RGB2GRAY)
gray = cv2.resize(gray, (512, 512), interpolation=cv2.INTER_AREA)
feats = []
for (P, R) in self.lbp_settings:
lbp = local_binary_pattern(gray, P=P, R=R, method="uniform")
n_bins = P + 2
hist, _ = np.histogram(lbp, bins=n_bins, range=(0, n_bins), density=True)
feats.append(hist.astype(np.float32))
for k in self.gabor_kernels:
resp = cv2.filter2D(gray, cv2.CV_32F, k)
feats.append([resp.mean(), resp.std()])
h = hog(
gray,
pixels_per_cell=(16, 16),
cells_per_block=(2, 2),
orientations=9,
visualize=False,
feature_vector=True,
)
feats.append(h.astype(np.float32))
return np.concatenate(feats, axis=0)
class ORBBoVW:
def __init__(self, n_words=64):
self.n_words = n_words
self.kmeans = None
self.orb = cv2.ORB_create(nfeatures=3000)
def _orb_des(self, arr: np.ndarray):
gray = cv2.cvtColor(arr, cv2.COLOR_RGB2GRAY)
kps, des = self.orb.detectAndCompute(gray, None)
if des is None:
return np.zeros((0, 32), dtype=np.uint8)
return des
def transform(self, arr: np.ndarray):
d = self._orb_des(arr)
if d.shape[0] == 0:
bow = np.zeros((self.n_words,), dtype=np.float32)
else:
idx = self.kmeans.predict(d.astype(np.float32))
bow, _ = np.histogram(idx, bins=np.arange(self.n_words + 1))
bow = bow.astype(np.float32)
bow /= np.linalg.norm(bow) + 1e-8
return bow
class ResNetMultiLayer(nn.Module):
def __init__(self):
super().__init__()
base = torchvision.models.resnet50(weights=None)
self.conv1 = base.conv1; self.bn1 = base.bn1
self.relu = base.relu; self.maxpool = base.maxpool
self.layer1 = base.layer1; self.layer2 = base.layer2
self.layer3 = base.layer3; self.layer4 = base.layer4
self.gap = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
x = self.conv1(x); x = self.bn1(x); x = self.relu(x); x = self.maxpool(x)
x = self.layer1(x); x2 = self.layer2(x)
x3 = self.layer3(x2); x4 = self.layer4(x3)
f2 = self.gap(x2).flatten(1)
f3 = self.gap(x3).flatten(1)
f4 = self.gap(x4).flatten(1)
return torch.cat([f2, f3, f4], dim=1)
# ---------------- LOAD MODELS ----------------
backbone = ResNetMultiLayer().to(DEVICE)
backbone.load_state_dict(torch.load(MODEL_PATH, map_location=DEVICE))
backbone.eval()
autocolor = AutoColor()
texturebank = TextureBank()
bovw = ORBBoVW(n_words=64)
bovw.kmeans = kmeans # dummy for transform()
TF_INFER = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])
])
# ---------------- FEATURE EXTRACTION ----------------
def extract_single_feature(img):
if isinstance(img, str):
img = Image.open(img).convert("RGB")
else:
img = img.convert("RGB")
arr = np.array(img)
pil = transforms.ToPILImage()(arr)
x = TF_INFER(pil).unsqueeze(0).to(DEVICE)
with torch.no_grad():
fcnn = backbone(x).cpu().numpy()
fcnn = normalize(fcnn, norm="l2") * 0.50
# forb = bovw.transform(arr)[None, :]
# forb = normalize(forb, norm="l2") * 0.10
ftex = texturebank.extract(arr)[None, :]
ftex = normalize(ftex, norm="l2") * 0.30
centers, props = autocolor.extract(arr)
fcol = autocolor.vectorize(centers, props)[None, :]
fcol = normalize(fcol, norm="l2") * 0.10
feats = np.hstack([fcnn, ftex, fcol]).astype(np.float32)
feats = normalize(feats, norm="l2")
return feats
def adjust_path(colab_path: str):
fname = os.path.basename(colab_path)
return f"{GDRIVE_FOLDER}/{fname}"
def recommend_gradio(img, top_k=5):
qf = extract_single_feature(img)
qf = np.array(qf).reshape(1, -1)
# 🔹 PAD if dimensions mismatch
expected_dim = nn_index._fit_X.shape[1] # dimension nn_index was trained on
if qf.shape[1] < expected_dim:
padding = np.zeros((1, expected_dim - qf.shape[1]), dtype=qf.dtype)
qf = np.hstack([qf, padding])
elif qf.shape[1] > expected_dim:
qf = qf[:, :expected_dim] # just in case it's larger (rare)
dists, idxs = nn_index.kneighbors(qf)
idxs = idxs[0].tolist()
results = []
for i in idxs[:top_k]:
cand = IMG_PATHS[i]
adjusted = adjust_path(cand)
results.append(f"[View Image]({adjusted})")
return "\n".join(results)
# ---------------- GRADIO APP ----------------
interface = gr.Interface(
fn=recommend_gradio,
inputs=gr.Image(type="filepath", label="Upload an Image"),
# outputs=gr.Gallery(label="Top Matches", columns=5, rows=2),
outputs=gr.Markdown(),
title="Image Similarity Search",
description="Upload an image and find the most similar images from the dataset."
)
if __name__ == "__main__":
interface.launch()