Spaces:
Runtime error
Runtime error
File size: 4,101 Bytes
a0b30e5 49fff35 a0b30e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import argparse
import gradio as gr
import torch
from PIL import Image
from transformers import DonutProcessor, VisionEncoderDecoderModel
task_prompt = f"<s_cord-v2>" # ๋ชจ๋ธ์๊ฒ "์ง๊ธ ์ํํ ํ์คํฌ ์ข
๋ฅ๋ฅผ ์๋ ค์ฃผ๋ ํํธ" ์ญํ : "์ด๋ฏธ์ง ์์์ ๋ฌด์์ ์ฝ์ด์ผ ํ๋์ง"๋ฅผ prompt ํํ๋ก ๊ฐ์ด๋ ํด์ค
# pretrained_path = "gwkrsrch/donut-cord-v2-menu-sample-demo"
pretrained_path = "SoccerData/Industry-AI"
processor = DonutProcessor.from_pretrained(pretrained_path)
pretrained_model = VisionEncoderDecoderModel.from_pretrained(pretrained_path)
pretrained_model.half()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pretrained_model.to(device)
pretrained_model.eval()
import re
def token2json(tokens, is_inner_value=False):
"""
Convert a (generated) token seuqnce into an ordered JSON format
"""
output = dict()
while tokens:
start_token = re.search(r"<s_(.*?)>", tokens, re.IGNORECASE)
if start_token is None:
break
key = start_token.group(1)
end_token = re.search(fr"</s_{key}>", tokens, re.IGNORECASE)
start_token = start_token.group()
if end_token is None:
tokens = tokens.replace(start_token, "")
else:
end_token = end_token.group()
start_token_escaped = re.escape(start_token)
end_token_escaped = re.escape(end_token)
content = re.search(f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE)
if content is not None:
content = content.group(1).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
value = token2json(content, is_inner_value=True)
if value:
if len(value) == 1:
value = value[0]
output[key] = value
else: # leaf nodes
output[key] = []
for leaf in content.split(r"<sep/>"):
leaf = leaf.strip()
output[key].append(leaf)
if len(output[key]) == 1:
output[key] = output[key][0]
tokens = tokens[tokens.find(end_token) + len(end_token) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + token2json(tokens[6:], is_inner_value=True)
if len(output):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
def demo_process(input_img):
global pretrained_model, task_prompt, device
input_img = Image.fromarray(input_img)
pixel_values = processor(input_img, return_tensors="pt").pixel_values.half().to(device)
decoder_input_ids = torch.full((1, 1), pretrained_model.config.decoder_start_token_id, device=device)
outputs = pretrained_model.generate(pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=pretrained_model.config.decoder.max_length,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,)
predictions = []
for seq in processor.tokenizer.batch_decode(outputs.sequences):
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
predictions.append(seq)
return token2json(predictions[0])
demo = gr.Interface(
fn=demo_process,
inputs="image",
outputs="json",
title=f"Donut ๐ฉ demonstration",
)
demo.launch(debug=True) |