|
|
import gradio as gr |
|
|
from PIL import Image, ImageChops |
|
|
from transformers import BlipProcessor, BlipForQuestionAnswering |
|
|
import torch |
|
|
|
|
|
|
|
|
model_name = "Salesforce/blip-vqa-base" |
|
|
processor = BlipProcessor.from_pretrained(model_name) |
|
|
model = BlipForQuestionAnswering.from_pretrained(model_name) |
|
|
|
|
|
valid_classes = ["plastic", "metal", "paper", "cardboard", "glass", "trash"] |
|
|
base_img = None |
|
|
|
|
|
|
|
|
def get_difference_image(base: Image.Image, trash: Image.Image) -> Image.Image: |
|
|
diff = ImageChops.difference(base, trash).convert("RGB") |
|
|
|
|
|
return diff |
|
|
|
|
|
|
|
|
def set_base(image): |
|
|
global base_img |
|
|
base_img = image.convert("RGB") |
|
|
return "Base image saved successfully." |
|
|
|
|
|
|
|
|
def detect_material(trash_image): |
|
|
global base_img |
|
|
if base_img is None: |
|
|
return "Please set base image first." |
|
|
|
|
|
trash_image = trash_image.convert("RGB") |
|
|
diff_image = get_difference_image(base_img, trash_image) |
|
|
|
|
|
question = "What material is this object? Choose one of: plastic, metal, paper, cardboard, glass, trash." |
|
|
|
|
|
inputs = processor(diff_image, question, return_tensors="pt") |
|
|
out = model.generate(**inputs) |
|
|
answer = processor.decode(out[0], skip_special_tokens=True).lower() |
|
|
|
|
|
|
|
|
material = next((c for c in valid_classes if c in answer), "trash") |
|
|
return material.capitalize() |
|
|
|
|
|
|
|
|
set_base_ui = gr.Interface( |
|
|
fn=set_base, |
|
|
inputs=gr.Image(type="pil", label="Upload Base Image (Empty Bin)"), |
|
|
outputs=gr.Textbox(label="Result"), |
|
|
title="Set Base Image", |
|
|
api_name="/set_base" |
|
|
) |
|
|
|
|
|
detect_ui = gr.Interface( |
|
|
fn=detect_material, |
|
|
inputs=gr.Image(type="pil", label="Upload Trash Image"), |
|
|
outputs=gr.Textbox(label="Detected Material"), |
|
|
title="Trash Material Detector", |
|
|
api_name="/detect_material" |
|
|
) |
|
|
|
|
|
demo = gr.TabbedInterface([set_base_ui, detect_ui], ["Set Base", "Detect Trash"]) |
|
|
demo.launch() |
|
|
|