import gradio as gr from PIL import Image, ImageChops from transformers import BlipProcessor, BlipForQuestionAnswering import torch # Load BLIP-VQA model model_name = "Salesforce/blip-vqa-base" processor = BlipProcessor.from_pretrained(model_name) model = BlipForQuestionAnswering.from_pretrained(model_name) valid_classes = ["plastic", "metal", "paper", "cardboard", "glass", "trash"] base_img = None # Global variable to store base image # Function to compute difference image def get_difference_image(base: Image.Image, trash: Image.Image) -> Image.Image: diff = ImageChops.difference(base, trash).convert("RGB") # Optional: enhance contrast to highlight difference return diff # Set base image def set_base(image): global base_img base_img = image.convert("RGB") return "Base image saved successfully." # Detect trash material def detect_material(trash_image): global base_img if base_img is None: return "Please set base image first." trash_image = trash_image.convert("RGB") diff_image = get_difference_image(base_img, trash_image) question = "What material is this object? Choose one of: plastic, metal, paper, cardboard, glass, trash." inputs = processor(diff_image, question, return_tensors="pt") out = model.generate(**inputs) answer = processor.decode(out[0], skip_special_tokens=True).lower() # Ensure answer is one of the valid classes material = next((c for c in valid_classes if c in answer), "trash") return material.capitalize() # Build Gradio UI set_base_ui = gr.Interface( fn=set_base, inputs=gr.Image(type="pil", label="Upload Base Image (Empty Bin)"), outputs=gr.Textbox(label="Result"), title="Set Base Image", api_name="/set_base" ) detect_ui = gr.Interface( fn=detect_material, inputs=gr.Image(type="pil", label="Upload Trash Image"), outputs=gr.Textbox(label="Detected Material"), title="Trash Material Detector", api_name="/detect_material" ) demo = gr.TabbedInterface([set_base_ui, detect_ui], ["Set Base", "Detect Trash"]) demo.launch()