Spaces:
Runtime error
Runtime error
File size: 20,238 Bytes
f7400bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import time
import inspect
import logging
from typing import Optional
import scipy.stats as stats
import tqdm
import numpy as np
from omegaconf import DictConfig
from typing import Dict
import math
import torch
import torch.distributions as dist
import torch.nn as nn
import torch
import torch.nn.functional as F
from models.config import instantiate_from_config
from models.utils.utils import count_parameters, extract_into_tensor, sum_flat
logger = logging.getLogger(__name__)
def exponential_pdf(x, a):
C = a / (np.exp(a) - 1)
return C * np.exp(a * x)
# Define a custom probability density function
class ExponentialPDF(stats.rv_continuous):
def _pdf(self, x, a):
return exponential_pdf(x, a)
def sample_t(exponential_pdf, num_samples, a=2):
t = exponential_pdf.rvs(size=num_samples, a=a)
t = torch.from_numpy(t).float()
t = torch.cat([t, 1 - t], dim=0)
t = t[torch.randperm(t.shape[0])]
t = t[:num_samples]
t_min = 1e-5
t_max = 1-1e-5
# Scale t to [t_min, t_max]
t = t * (t_max - t_min) + t_min
return t
def sample_beta_distribution(num_samples, alpha=2, beta=0.8, t_min=1e-5, t_max=1-1e-5):
"""
Samples from a Beta distribution with the specified parameters.
Args:
num_samples (int): Number of samples to generate.
alpha (float): Alpha parameter of the Beta distribution (shape1).
beta (float): Beta parameter of the Beta distribution (shape2).
t_min (float): Minimum value for scaling the samples (default is near 0).
t_max (float): Maximum value for scaling the samples (default is near 1).
Returns:
torch.Tensor: Tensor of sampled values.
"""
# Define the Beta distribution
beta_dist = dist.Beta(alpha, beta)
# Sample values from the Beta distribution
samples = beta_dist.sample((num_samples,))
# Scale the samples to the range [t_min, t_max]
scaled_samples = samples * (t_max - t_min) + t_min
return scaled_samples
def sample_t_fast(num_samples, a=2, t_min=1e-5, t_max=1-1e-5):
# Direct inverse sampling for exponential distribution
C = a / (np.exp(a) - 1)
# Generate uniform samples
u = torch.rand(num_samples * 2)
# Inverse transform sampling formula for the exponential PDF
# F^(-1)(u) = (1/a) * ln(1 + u*(exp(a) - 1))
t = (1/a) * torch.log(1 + u * (np.exp(a) - 1))
# Combine t and 1-t
t = torch.cat([t, 1 - t])
# Random permutation and slice
t = t[torch.randperm(t.shape[0])][:num_samples]
# Scale to [t_min, t_max]
t = t * (t_max - t_min) + t_min
return t
def sample_cosmap(num_samples, t_min=1e-5, t_max=1-1e-5, device='cpu'):
"""
CosMap sampling.
Args:
num_samples: Number of samples to generate
t_min, t_max: Range limits to avoid numerical issues
"""
# Generate uniform samples
u = torch.rand(num_samples, device=device)
# Apply the cosine mapping
pi_half = torch.pi / 2
t = 1 - 1 / (torch.tan(pi_half * u) + 1)
# Scale to [t_min, t_max]
t = t * (t_max - t_min) + t_min
return t
def reshape_coefs(t):
return t.reshape((t.shape[0], 1, 1, 1))
class GestureLSM(torch.nn.Module):
def __init__(self, cfg) -> None:
super().__init__()
self.cfg = cfg
# Initialize model components
self.modality_encoder = instantiate_from_config(cfg.model.modality_encoder)
self.denoiser = instantiate_from_config(cfg.model.denoiser)
# Model hyperparameters
self.do_classifier_free_guidance = cfg.model.do_classifier_free_guidance
self.guidance_scale = cfg.model.guidance_scale
self.num_inference_steps = cfg.model.n_steps
# Loss functions
self.smooth_l1_loss = torch.nn.SmoothL1Loss(reduction='none')
self.num_joints = self.denoiser.joint_num
self.seq_len = self.denoiser.seq_len
self.input_dim = self.denoiser.input_dim
# Flow matching mode: 'v' for velocity prediction, 'x1' for direct position prediction
self.flow_mode = cfg.model.get("flow_mode", "v")
assert self.flow_mode in [
"v",
"x1",
], f"Flow mode must be 'v' or 'x1', got {self.flow_mode}"
logger.info(f"Using flow mode: {self.flow_mode}")
def summarize_parameters(self) -> None:
logger.info(f'Denoiser: {count_parameters(self.denoiser)}M')
logger.info(f'Encoder: {count_parameters(self.modality_encoder)}M')
def apply_classifier_free_guidance(self, x, timesteps, seed, at_feat, cond_time=None, guidance_scale=1.0):
"""
Apply classifier-free guidance by running both conditional and unconditional predictions.
Args:
x: Input tensor
timesteps: Timestep tensor
seed: Seed vectors
at_feat: Audio features
cond_time: Conditional time tensor
guidance_scale: Guidance scale (1.0 means no guidance)
Returns:
Guided output tensor
"""
if guidance_scale <= 1.0:
# No guidance needed, run normal forward pass
return self.denoiser(
x=x,
timesteps=timesteps,
seed=seed,
at_feat=at_feat,
cond_time=cond_time,
)
# Double the batch for classifier free guidance
x_doubled = torch.cat([x] * 2, dim=0)
seed_doubled = torch.cat([seed] * 2, dim=0)
at_feat_doubled = torch.cat([at_feat] * 2, dim=0)
# Properly expand timesteps to match doubled batch size
batch_size = x.shape[0]
timesteps_doubled = timesteps.expand(batch_size * 2)
if cond_time is not None:
cond_time_doubled = cond_time.expand(batch_size * 2)
else:
cond_time_doubled = None
# Create conditional and unconditional audio features
batch_size = at_feat.shape[0]
seq_len = self.denoiser.null_cond_embed.shape[0]
if at_feat.shape[1] != seq_len:
at_feat = F.interpolate(
at_feat.transpose(1, 2),
size=seq_len,
mode="linear",
align_corners=False,
).transpose(1, 2)
logger.warning(
"Adjusted conditional feature length to match denoiser (got=%d, expected=%d)",
at_feat.shape[1],
seq_len,
)
null_cond_embed = self.denoiser.null_cond_embed.to(at_feat.dtype)
at_feat_uncond = null_cond_embed.unsqueeze(0).expand(batch_size, -1, -1)
at_feat_combined = torch.cat([at_feat, at_feat_uncond], dim=0)
# Run both conditional and unconditional predictions
output = self.denoiser(
x=x_doubled,
timesteps=timesteps_doubled,
seed=seed_doubled,
at_feat=at_feat_combined,
cond_time=cond_time_doubled,
)
# Split predictions and apply guidance
pred_cond, pred_uncond = output.chunk(2, dim=0)
guided_output = pred_uncond + guidance_scale * (pred_cond - pred_uncond)
return guided_output
def apply_conditional_dropout(self, at_feat, cond_drop_prob=0.1):
"""
Apply conditional dropout during training to simulate classifier-free guidance.
Args:
at_feat: Audio features tensor
cond_drop_prob: Probability of dropping conditions (default 0.1)
Returns:
Modified audio features with some conditions replaced by null embeddings
"""
batch_size = at_feat.shape[0]
# Create dropout mask
keep_mask = torch.rand(batch_size, device=at_feat.device) > cond_drop_prob
# Create null condition embeddings
null_cond_embed = self.denoiser.null_cond_embed.to(at_feat.dtype)
# Apply dropout: replace dropped conditions with null embeddings
at_feat_dropped = at_feat.clone()
at_feat_dropped[~keep_mask] = null_cond_embed.unsqueeze(0).expand((~keep_mask).sum(), -1, -1)
return at_feat_dropped
def apply_force_cfg(self, at_feat, force_cfg):
"""
Apply forced conditional dropout based on the force_cfg mask.
Args:
at_feat: Audio features tensor
force_cfg: Boolean mask indicating which samples should use null conditions
Returns:
Modified audio features with forced conditions replaced by null embeddings
"""
batch_size = at_feat.shape[0]
# Create null condition embeddings
null_cond_embed = self.denoiser.null_cond_embed.to(at_feat.dtype)
# Apply forced dropout: replace forced conditions with null embeddings
at_feat_forced = at_feat.clone()
force_cfg_tensor = torch.tensor(force_cfg, device=at_feat.device)
at_feat_forced[force_cfg_tensor] = null_cond_embed.unsqueeze(0).expand(force_cfg_tensor.sum(), -1, -1)
return at_feat_forced
def forward(self, condition_dict: Dict[str, Dict]) -> Dict[str, torch.Tensor]:
"""Forward pass for inference.
Args:
condition_dict: Dictionary containing input conditions including audio, word tokens,
and other features
Returns:
Dictionary containing generated latents
"""
# Extract input features
audio = condition_dict['y']['audio_onset']
word_tokens = condition_dict['y']['word']
ids = condition_dict['y']['id']
seed_vectors = condition_dict['y']['seed']
style_features = condition_dict['y']['style_feature']
if 'wavlm' in condition_dict['y']:
wavlm_features = condition_dict['y']['wavlm']
else:
wavlm_features = None
return_dict = {}
return_dict['seed'] = seed_vectors
# Encode input modalities
audio_features = self.modality_encoder(audio, word_tokens, wavlm_features)
return_dict['at_feat'] = audio_features
# Initialize generation
batch_size = audio_features.shape[0]
latent_shape = (batch_size, self.input_dim * self.num_joints, 1, self.seq_len)
# Sampling parameters
x_t = torch.randn(latent_shape, device=audio_features.device)
return_dict['init_noise'] = x_t
epsilon = 1e-8
delta_t = torch.tensor(1 / self.num_inference_steps).to(audio_features.device)
timesteps = torch.linspace(epsilon, 1 - epsilon, self.num_inference_steps + 1).to(audio_features.device)
# Generation loop
for step in range(1, len(timesteps)):
current_t = timesteps[step - 1].unsqueeze(0)
current_delta = delta_t.unsqueeze(0)
with torch.no_grad():
model_output = self.apply_classifier_free_guidance(
x=x_t,
timesteps=current_t,
seed=seed_vectors,
at_feat=audio_features,
cond_time=current_delta,
guidance_scale=self.guidance_scale
)
if self.flow_mode == "v":
# Velocity prediction mode (original)
# Update x_t using the predicted velocity field
x_t = x_t + (timesteps[step] - timesteps[step - 1]) * model_output
else: # 'x1' mode
# Direct position prediction mode
x_t = x_t + (timesteps[step] - timesteps[step - 1]) * (model_output - return_dict['init_noise'])
return_dict['latents'] = x_t
return return_dict
def train_forward(self, condition_dict: Dict[str, Dict],
latents: torch.Tensor, train_consistency=False) -> Dict[str, torch.Tensor]:
"""Compute training losses for both flow matching and consistency.
Args:
condition_dict: Dictionary containing training conditions
latents: Target latent vectors
Returns:
Dictionary containing individual and total losses
"""
# Extract input features
audio = condition_dict['y']['audio_onset']
word_tokens = condition_dict['y']['word']
instance_ids = condition_dict['y']['id']
seed_vectors = condition_dict['y']['seed']
style_features = condition_dict['y']['style_feature']
# Encode input modalities
audio_features = self.modality_encoder(audio, word_tokens)
# Initialize noise
x0_noise = torch.randn_like(latents)
# Sample timesteps and deltas
deltas = 1 / torch.tensor([2 ** i for i in range(1, 8)]).to(latents.device)
delta_probs = torch.ones((deltas.shape[0],)).to(latents.device) / deltas.shape[0]
batch_size = latents.shape[0]
flow_batch_size = int(batch_size * 3/4)
# Apply conditional dropout during training for flow matching loss
audio_features_flow = self.apply_conditional_dropout(audio_features[:flow_batch_size], cond_drop_prob=0.1)
# Sample random coefficients
t = sample_beta_distribution(batch_size, alpha=2, beta=1.2).to(latents.device)
# t = sample_beta_distribution(batch_size, alpha=2, beta=0.8).to(latents.device)
d = deltas[delta_probs.multinomial(batch_size, replacement=True)]
d[:flow_batch_size] = 0
# Prepare inputs
t_coef = reshape_coefs(t)
x_t = t_coef * latents + (1 - t_coef) * x0_noise
t = t_coef.flatten()
# Flow matching loss
model_output = self.denoiser(
x=x_t[:flow_batch_size],
timesteps=t[:flow_batch_size],
seed=seed_vectors[:flow_batch_size],
at_feat=audio_features_flow,
cond_time=d[:flow_batch_size],
)
losses = {}
if self.flow_mode == "v":
# Velocity prediction mode (original)
flow_target = latents[:flow_batch_size] - x0_noise[:flow_batch_size]
flow_loss = (
F.mse_loss(flow_target, model_output) / t[:flow_batch_size]
).mean()
else: # 'x1' mode
# Direct position prediction mode
flow_target = latents[:flow_batch_size]
flow_loss = (F.mse_loss(flow_target, model_output) / t[:flow_batch_size]).mean()
losses["flow_loss"] = flow_loss
# Consistency loss computation
# Jan 11, perform cfg at the same time, 50% true and 50% false
force_cfg = np.random.choice(
[True, False], size=batch_size - flow_batch_size, p=[0.8, 0.2]
)
# Apply force_cfg externally
audio_features_consistency = self.apply_force_cfg(audio_features[flow_batch_size:], force_cfg)
with torch.no_grad():
pred_t = self.denoiser(
x=x_t[flow_batch_size:],
timesteps=t[flow_batch_size:],
seed=seed_vectors[flow_batch_size:],
at_feat=audio_features_consistency,
cond_time=d[flow_batch_size:],
)
d_coef = reshape_coefs(d)
if self.flow_mode == "v":
speed_t = pred_t
else:
speed_t = speed_t - x0_noise
x_td = x_t[flow_batch_size:] + d_coef[flow_batch_size:] * speed_t
d = d_coef.flatten()
pred_td = self.denoiser(
x=x_td,
timesteps=t[flow_batch_size:] + d[flow_batch_size:],
seed=seed_vectors[flow_batch_size:],
at_feat=audio_features_consistency,
cond_time=d[flow_batch_size:],
)
if self.flow_mode == "v":
speed_td = pred_td
else:
speed_td = speed_t - x0_noise
speed_target = (speed_t + speed_td) / 2
model_pred = self.denoiser(
x=x_t[flow_batch_size:],
timesteps=t[flow_batch_size:],
seed=seed_vectors[flow_batch_size:],
at_feat=audio_features_consistency,
cond_time=2 * d[flow_batch_size:],
)
if self.flow_mode == "v":
speed_pred = model_pred
else:
speed_pred = model_pred - x0_noise
consistency_loss = F.mse_loss(speed_pred, speed_target, reduction="mean")
losses["consistency_loss"] = consistency_loss
losses["loss"] = sum(losses.values())
return losses
def train_reflow(self, latents, audio_features, x0_noise, seed_vectors) -> Dict[str, torch.Tensor]:
"""Compute training losses for both flow matching and consistency.
Args:
condition_dict: Dictionary containing training conditions
latents: Target latent vectors
Returns:
Dictionary containing individual and total losses
"""
# Sample timesteps and deltas
deltas = 1 / torch.tensor([2 ** i for i in range(1, 8)]).to(latents.device)
delta_probs = torch.ones((deltas.shape[0],)).to(latents.device) / deltas.shape[0]
batch_size = latents.shape[0]
flow_batch_size = int(batch_size * 3/4)
# Sample random coefficients
t = sample_beta_distribution(batch_size, alpha=2, beta=1.2).to(latents.device)
# t = sample_beta_distribution(batch_size, alpha=2, beta=0.8).to(latents.device)
d = deltas[delta_probs.multinomial(batch_size, replacement=True)]
d[:flow_batch_size] = 0
# Prepare inputs
t_coef = reshape_coefs(t)
x_t = t_coef * latents + (1 - t_coef) * x0_noise
t = t_coef.flatten()
# Flow matching loss
flow_pred = self.denoiser(
x=x_t[:flow_batch_size],
timesteps=t[:flow_batch_size],
seed=seed_vectors[:flow_batch_size],
at_feat=audio_features[:flow_batch_size],
cond_time=d[:flow_batch_size],
)
flow_target = latents[:flow_batch_size] - x0_noise[:flow_batch_size]
losses = {}
flow_loss = (F.mse_loss(flow_target, flow_pred) / t).mean()
losses['flow_loss'] = flow_loss
# Consistency loss computation
# Jan 11, perform cfg at the same time, 50% true and 50% false
force_cfg = np.random.choice([True, False], size=batch_size-flow_batch_size, p=[0.8, 0.2])
with torch.no_grad():
speed_t = self.denoiser(
x=x_t[flow_batch_size:],
timesteps=t[flow_batch_size:],
seed=seed_vectors[flow_batch_size:],
at_feat=audio_features[flow_batch_size:],
cond_time=d[flow_batch_size:],
)
d_coef = reshape_coefs(d)
x_td = x_t[flow_batch_size:] + d_coef[flow_batch_size:] * speed_t
d = d_coef.flatten()
speed_td = self.denoiser(
x=x_td,
timesteps=t[flow_batch_size:] + d[flow_batch_size:],
seed=seed_vectors[flow_batch_size:],
at_feat=audio_features[flow_batch_size:],
cond_time=d[flow_batch_size:],
)
speed_target = (speed_t + speed_td) / 2
speed_pred = self.denoiser(
x=x_t[flow_batch_size:],
timesteps=t[flow_batch_size:],
seed=seed_vectors[flow_batch_size:],
at_feat=audio_features[flow_batch_size:],
cond_time=2 * d[flow_batch_size:],
)
consistency_loss = F.mse_loss(speed_pred, speed_target, reduction="mean")
losses['consistency_loss'] = consistency_loss
losses['loss'] = sum(losses.values())
return losses |