Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,47 +13,48 @@ def compute_pseudo_perplexity(model, tokenizer, protein_seq, binder_seq):
|
|
| 13 |
sequence = protein_seq + binder_seq
|
| 14 |
tensor_input = tokenizer.encode(sequence, return_tensors='pt').to(model.device)
|
| 15 |
total_loss = 0
|
| 16 |
-
|
| 17 |
# Loop through each token in the binder sequence
|
| 18 |
for i in range(-len(binder_seq)-1, -1):
|
| 19 |
# Create a copy of the original tensor
|
| 20 |
masked_input = tensor_input.clone()
|
| 21 |
-
|
| 22 |
# Mask one token at a time
|
| 23 |
masked_input[0, i] = tokenizer.mask_token_id
|
|
|
|
| 24 |
# Create labels
|
| 25 |
labels = torch.full(tensor_input.shape, -100).to(model.device)
|
| 26 |
labels[0, i] = tensor_input[0, i]
|
| 27 |
-
|
| 28 |
# Get model prediction and loss
|
| 29 |
with torch.no_grad():
|
| 30 |
outputs = model(masked_input, labels=labels)
|
| 31 |
total_loss += outputs.loss.item()
|
| 32 |
-
|
| 33 |
# Calculate the average loss
|
| 34 |
avg_loss = total_loss / len(binder_seq)
|
| 35 |
-
|
| 36 |
# Calculate pseudo perplexity
|
| 37 |
pseudo_perplexity = np.exp(avg_loss)
|
|
|
|
| 38 |
return pseudo_perplexity
|
| 39 |
|
| 40 |
-
|
| 41 |
def generate_peptide(protein_seq, peptide_length, top_k, num_binders):
|
| 42 |
-
|
| 43 |
peptide_length = int(peptide_length)
|
| 44 |
top_k = int(top_k)
|
| 45 |
num_binders = int(num_binders)
|
| 46 |
-
|
| 47 |
binders_with_ppl = []
|
| 48 |
-
|
| 49 |
-
for _ in range(num_binders):
|
| 50 |
# Generate binder
|
| 51 |
masked_peptide = '<mask>' * peptide_length
|
| 52 |
input_sequence = protein_seq + masked_peptide
|
|
|
|
| 53 |
inputs = tokenizer(input_sequence, return_tensors="pt").to(model.device)
|
| 54 |
-
|
| 55 |
with torch.no_grad():
|
| 56 |
logits = model(**inputs).logits
|
|
|
|
| 57 |
mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
|
| 58 |
logits_at_masks = logits[0, mask_token_indices]
|
| 59 |
|
|
@@ -62,25 +63,23 @@ def generate_peptide(protein_seq, peptide_length, top_k, num_binders):
|
|
| 62 |
probabilities = torch.nn.functional.softmax(top_k_logits, dim=-1)
|
| 63 |
predicted_indices = Categorical(probabilities).sample()
|
| 64 |
predicted_token_ids = top_k_indices.gather(-1, predicted_indices.unsqueeze(-1)).squeeze(-1)
|
| 65 |
-
|
| 66 |
generated_binder = tokenizer.decode(predicted_token_ids, skip_special_tokens=True).replace(' ', '')
|
| 67 |
-
|
| 68 |
# Compute PPL for the generated binder
|
| 69 |
ppl_value = compute_pseudo_perplexity(model, tokenizer, protein_seq, generated_binder)
|
| 70 |
-
|
| 71 |
# Add the generated binder and its PPL to the results list
|
| 72 |
binders_with_ppl.append([generated_binder, ppl_value])
|
| 73 |
-
|
| 74 |
-
# Convert the list of lists to a pandas dataframe
|
| 75 |
-
df = pd.DataFrame(binders_with_ppl, columns=["Binder", "Perplexity"])
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
| 84 |
|
| 85 |
# Define the Gradio interface
|
| 86 |
interface = gr.Interface(
|
|
@@ -92,12 +91,12 @@ interface = gr.Interface(
|
|
| 92 |
gr.Dropdown(choices=[1, 2, 4, 8, 16, 32], label="Number of Binders", value=1)
|
| 93 |
],
|
| 94 |
outputs=[
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
],
|
| 102 |
title="PepMLM: Target Sequence-Conditioned Generation of Peptide Binders via Masked Language Modeling"
|
| 103 |
)
|
|
|
|
| 13 |
sequence = protein_seq + binder_seq
|
| 14 |
tensor_input = tokenizer.encode(sequence, return_tensors='pt').to(model.device)
|
| 15 |
total_loss = 0
|
| 16 |
+
|
| 17 |
# Loop through each token in the binder sequence
|
| 18 |
for i in range(-len(binder_seq)-1, -1):
|
| 19 |
# Create a copy of the original tensor
|
| 20 |
masked_input = tensor_input.clone()
|
|
|
|
| 21 |
# Mask one token at a time
|
| 22 |
masked_input[0, i] = tokenizer.mask_token_id
|
| 23 |
+
|
| 24 |
# Create labels
|
| 25 |
labels = torch.full(tensor_input.shape, -100).to(model.device)
|
| 26 |
labels[0, i] = tensor_input[0, i]
|
| 27 |
+
|
| 28 |
# Get model prediction and loss
|
| 29 |
with torch.no_grad():
|
| 30 |
outputs = model(masked_input, labels=labels)
|
| 31 |
total_loss += outputs.loss.item()
|
| 32 |
+
|
| 33 |
# Calculate the average loss
|
| 34 |
avg_loss = total_loss / len(binder_seq)
|
| 35 |
+
|
| 36 |
# Calculate pseudo perplexity
|
| 37 |
pseudo_perplexity = np.exp(avg_loss)
|
| 38 |
+
|
| 39 |
return pseudo_perplexity
|
| 40 |
|
|
|
|
| 41 |
def generate_peptide(protein_seq, peptide_length, top_k, num_binders):
|
|
|
|
| 42 |
peptide_length = int(peptide_length)
|
| 43 |
top_k = int(top_k)
|
| 44 |
num_binders = int(num_binders)
|
| 45 |
+
|
| 46 |
binders_with_ppl = []
|
| 47 |
+
|
| 48 |
+
for _ in range(num_binders): # Fixed: underscore instead of asterisk
|
| 49 |
# Generate binder
|
| 50 |
masked_peptide = '<mask>' * peptide_length
|
| 51 |
input_sequence = protein_seq + masked_peptide
|
| 52 |
+
|
| 53 |
inputs = tokenizer(input_sequence, return_tensors="pt").to(model.device)
|
| 54 |
+
|
| 55 |
with torch.no_grad():
|
| 56 |
logits = model(**inputs).logits
|
| 57 |
+
|
| 58 |
mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
|
| 59 |
logits_at_masks = logits[0, mask_token_indices]
|
| 60 |
|
|
|
|
| 63 |
probabilities = torch.nn.functional.softmax(top_k_logits, dim=-1)
|
| 64 |
predicted_indices = Categorical(probabilities).sample()
|
| 65 |
predicted_token_ids = top_k_indices.gather(-1, predicted_indices.unsqueeze(-1)).squeeze(-1)
|
| 66 |
+
|
| 67 |
generated_binder = tokenizer.decode(predicted_token_ids, skip_special_tokens=True).replace(' ', '')
|
| 68 |
+
|
| 69 |
# Compute PPL for the generated binder
|
| 70 |
ppl_value = compute_pseudo_perplexity(model, tokenizer, protein_seq, generated_binder)
|
| 71 |
+
|
| 72 |
# Add the generated binder and its PPL to the results list
|
| 73 |
binders_with_ppl.append([generated_binder, ppl_value])
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
# Convert the list of lists to a pandas dataframe
|
| 76 |
+
df = pd.DataFrame(binders_with_ppl, columns=["Binder", "Perplexity"])
|
| 77 |
+
|
| 78 |
+
# Save the dataframe to a CSV file
|
| 79 |
+
output_filename = "output.csv"
|
| 80 |
+
df.to_csv(output_filename, index=False)
|
| 81 |
+
|
| 82 |
+
return df, output_filename # Return dataframe instead of list
|
| 83 |
|
| 84 |
# Define the Gradio interface
|
| 85 |
interface = gr.Interface(
|
|
|
|
| 91 |
gr.Dropdown(choices=[1, 2, 4, 8, 16, 32], label="Number of Binders", value=1)
|
| 92 |
],
|
| 93 |
outputs=[
|
| 94 |
+
gr.Dataframe(
|
| 95 |
+
headers=["Binder", "Perplexity"],
|
| 96 |
+
datatype=["str", "number"],
|
| 97 |
+
col_count=(2, "fixed")
|
| 98 |
+
),
|
| 99 |
+
gr.File(label="Download CSV") # Fixed: Use gr.File instead of gr.outputs.File
|
| 100 |
],
|
| 101 |
title="PepMLM: Target Sequence-Conditioned Generation of Peptide Binders via Masked Language Modeling"
|
| 102 |
)
|