Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,164 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
with gr.Blocks(title="Paper Reader Assistant") as demo:
|
| 7 |
gr.Markdown("""
|
| 8 |
# 📖 Paper Reader Assistant
|
| 9 |
-
|
| 10 |
-
(这是一个示例界面。上传PDF、摘要、关键词、问答功能可在完整版中添加。)
|
| 11 |
""")
|
| 12 |
-
|
| 13 |
with gr.Row():
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
if __name__ == "__main__":
|
| 21 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import fitz # PyMuPDF
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
from keybert import KeyBERT
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
import faiss
|
| 7 |
+
import numpy as np
|
| 8 |
+
import re
|
| 9 |
|
| 10 |
+
# =============== 初始化模型 ===============
|
| 11 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 12 |
+
qa_generator = pipeline("text2text-generation", model="google/flan-t5-base")
|
| 13 |
+
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 14 |
+
kw_model = KeyBERT(model=embedder)
|
| 15 |
|
| 16 |
+
# 全局变量(保存上传文献的分块与索引)
|
| 17 |
+
CHUNKS = []
|
| 18 |
+
INDEX = None
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# =============== 工具函数 ===============
|
| 22 |
+
def clean_text(t):
|
| 23 |
+
t = t.replace("\x00", " ")
|
| 24 |
+
t = re.sub(r"\s+", " ", t)
|
| 25 |
+
return t.strip()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def pdf_to_text(file_bytes):
|
| 29 |
+
doc = fitz.open(stream=file_bytes, filetype="pdf")
|
| 30 |
+
texts = []
|
| 31 |
+
for page in doc:
|
| 32 |
+
t = page.get_text("text")
|
| 33 |
+
if t:
|
| 34 |
+
texts.append(t)
|
| 35 |
+
return clean_text("\n".join(texts))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def chunk_text(text, chunk_size=800, overlap=120):
|
| 39 |
+
if len(text) <= chunk_size:
|
| 40 |
+
return [text]
|
| 41 |
+
chunks, start = [], 0
|
| 42 |
+
while start < len(text):
|
| 43 |
+
end = min(start + chunk_size, len(text))
|
| 44 |
+
boundary = max(
|
| 45 |
+
text.rfind(". ", start, end),
|
| 46 |
+
text.rfind("。", start, end),
|
| 47 |
+
text.rfind("\n", start, end),
|
| 48 |
+
)
|
| 49 |
+
if boundary == -1 or boundary <= start + 200:
|
| 50 |
+
boundary = end
|
| 51 |
+
chunks.append(text[start:boundary].strip())
|
| 52 |
+
start = max(boundary - overlap, 0)
|
| 53 |
+
if start == boundary:
|
| 54 |
+
start += 1
|
| 55 |
+
return [c for c in chunks if len(c) > 10]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def build_faiss(chunks):
|
| 59 |
+
global INDEX
|
| 60 |
+
embs = embedder.encode(chunks, normalize_embeddings=True)
|
| 61 |
+
index = faiss.IndexFlatIP(embs.shape[1])
|
| 62 |
+
index.add(embs.astype(np.float32))
|
| 63 |
+
INDEX = index
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def retrieve(query, top_k=5):
|
| 67 |
+
if INDEX is None or not CHUNKS:
|
| 68 |
+
return []
|
| 69 |
+
q = embedder.encode([query], normalize_embeddings=True).astype(np.float32)
|
| 70 |
+
D, I = INDEX.search(q, top_k)
|
| 71 |
+
results = [(CHUNKS[i], float(D[0][j])) for j, i in enumerate(I[0]) if i != -1]
|
| 72 |
+
return results
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# =============== 功能实现 ===============
|
| 76 |
+
def handle_upload(pdf_files):
|
| 77 |
+
global CHUNKS
|
| 78 |
+
if not pdf_files:
|
| 79 |
+
return "", "未上传文件"
|
| 80 |
+
texts = []
|
| 81 |
+
for f in pdf_files:
|
| 82 |
+
b = f.read()
|
| 83 |
+
txt = pdf_to_text(b)
|
| 84 |
+
texts.append(txt)
|
| 85 |
+
merged = "\n".join(texts)
|
| 86 |
+
CHUNKS = chunk_text(merged)
|
| 87 |
+
build_faiss(CHUNKS)
|
| 88 |
+
return merged[:50000], f"✅ 已成功建立索引:{len(CHUNKS)} 个片段"
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def summarize_text(text):
|
| 92 |
+
if not text or len(text) < 50:
|
| 93 |
+
return "请输入更长的文本或先上传 PDF。"
|
| 94 |
+
parts = chunk_text(text, 1000, 100)
|
| 95 |
+
summaries = []
|
| 96 |
+
for p in parts:
|
| 97 |
+
try:
|
| 98 |
+
s = summarizer(p, max_length=150, min_length=40, do_sample=False)[0]["summary_text"]
|
| 99 |
+
summaries.append(s)
|
| 100 |
+
except Exception:
|
| 101 |
+
continue
|
| 102 |
+
combined = " ".join(summaries)
|
| 103 |
+
final = summarizer(combined, max_length=200, min_length=60, do_sample=False)[0]["summary_text"]
|
| 104 |
+
return final
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def extract_keywords(text, top_n=10):
|
| 108 |
+
if not text or len(text) < 50:
|
| 109 |
+
return "请输入更长的文本或先上传 PDF。"
|
| 110 |
+
pairs = kw_model.extract_keywords(text[:10000], top_n=top_n)
|
| 111 |
+
return ", ".join([k for k, _ in pairs])
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def answer_question(question, top_k=5):
|
| 115 |
+
if not CHUNKS:
|
| 116 |
+
return "请先上传 PDF 并建立索引。", ""
|
| 117 |
+
docs = retrieve(question, top_k)
|
| 118 |
+
context = "\n\n".join([f"[{i+1}] {c}" for i, (c, _) in enumerate(docs)])
|
| 119 |
+
prompt = (
|
| 120 |
+
"You are a helpful research assistant. Answer the question strictly based on the CONTEXT. "
|
| 121 |
+
"If the answer cannot be found, say 'Not found in the provided documents.'\n\n"
|
| 122 |
+
f"CONTEXT:\n{context}\n\nQUESTION: {question}\nANSWER:"
|
| 123 |
+
)
|
| 124 |
+
out = qa_generator(prompt, max_new_tokens=256)[0]["generated_text"]
|
| 125 |
+
cites = "\n".join([f"[{i+1}] 相似度={score:.3f}" for i, (_, score) in enumerate(docs)])
|
| 126 |
+
return out, cites
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# =============== Gradio 界面 ===============
|
| 130 |
with gr.Blocks(title="Paper Reader Assistant") as demo:
|
| 131 |
gr.Markdown("""
|
| 132 |
# 📖 Paper Reader Assistant
|
| 133 |
+
上传 PDF,自动抽取文本,生成摘要、关键词,并支持基于内容的问答(RAG)。
|
|
|
|
| 134 |
""")
|
| 135 |
+
|
| 136 |
with gr.Row():
|
| 137 |
+
pdf_uploader = gr.File(label="上传 PDF(可多选)", file_count="multiple", file_types=[".pdf"])
|
| 138 |
+
build_info = gr.Textbox(label="状态", interactive=False)
|
| 139 |
+
|
| 140 |
+
doc_text = gr.Textbox(label="文档内容预览(前 50,000 字符)", lines=14)
|
| 141 |
+
|
| 142 |
+
upload_btn = gr.Button("📥 解析 PDF 并建立索引")
|
| 143 |
+
|
| 144 |
+
with gr.Tab("📝 摘要"):
|
| 145 |
+
sum_btn = gr.Button("生成摘要")
|
| 146 |
+
sum_out = gr.Textbox(label="摘要结果", lines=10)
|
| 147 |
+
|
| 148 |
+
with gr.Tab("🔑 关键词"):
|
| 149 |
+
kw_btn = gr.Button("提取关键词")
|
| 150 |
+
kw_out = gr.Textbox(label="关键词", lines=8)
|
| 151 |
+
|
| 152 |
+
with gr.Tab("❓ 问答 RAG"):
|
| 153 |
+
question = gr.Textbox(label="你的问题", lines=2)
|
| 154 |
+
qa_btn = gr.Button("回答问题")
|
| 155 |
+
answer_out = gr.Textbox(label="答案", lines=10)
|
| 156 |
+
cites_out = gr.Textbox(label="参考片段", lines=6)
|
| 157 |
+
|
| 158 |
+
upload_btn.click(handle_upload, inputs=[pdf_uploader], outputs=[doc_text, build_info])
|
| 159 |
+
sum_btn.click(summarize_text, inputs=[doc_text], outputs=sum_out)
|
| 160 |
+
kw_btn.click(extract_keywords, inputs=[doc_text], outputs=kw_out)
|
| 161 |
+
qa_btn.click(answer_question, inputs=[question], outputs=[answer_out, cites_out])
|
| 162 |
|
| 163 |
if __name__ == "__main__":
|
| 164 |
demo.launch()
|