--- title: Paper Reader Assistant emoji: πŸ“š colorFrom: blue colorTo: green sdk: gradio sdk_version: "4.44.0" app_file: app.py pinned: false --- # πŸ“– Paper Reader Assistant (Gradio on Hugging Face Spaces) This Space helps you **read and analyze academic papers** with AI assistance. You can upload PDF files, and the app will automatically extract text, generate summaries, identify keywords, and enable question answering using RAG (Retrieval-Augmented Generation). --- ## πŸš€ Features - 🧾 **PDF Upload** β†’ Extracts text using PyMuPDF - ✍️ **Summarization** β†’ Uses BART for map-reduce summarization - πŸ”‘ **Keyword Extraction** β†’ Powered by KeyBERT - ❓ **Q&A (RAG)** β†’ Combines FAISS + SentenceTransformers + Flan-T5 - 🧠 **All-in-one academic reading assistant** --- ## βš™οΈ Quick Start 1. Create a new **Space** on Hugging Face with SDK = **Gradio** 2. Upload three files: - `app.py` - `requirements.txt` - `README.md` (this file) 3. Save changes β€” Spaces will automatically build and launch the app 4. Once it’s live, open the Space URL to start using it --- ## πŸ’‘ Notes - Works best on **English scientific PDFs** (text-based). - For **scanned PDFs**, run OCR first (not yet included in this version). - Models run on **CPU by default** β€” enable GPU for faster processing. - You can further customize UI theme, font color, or add dark mode by editing `app.py`. --- ## 🧰 Tech Stack | Component | Description | |------------|-------------| | **Gradio** | Front-end interface | | **PyMuPDF** | PDF text extraction | | **Transformers (BART)** | Summarization | | **KeyBERT** | Keyword extraction | | **Sentence-Transformers + FAISS** | Vector retrieval for Q&A | | **Flan-T5** | Natural language generation | --- **Author:** WENIor **License:** MIT **Version:** 1.0.0