wiw-prototype / app.py
annaaaddddd's picture
Update app.py to use the new interactive demo UI
892fa36 verified
import gradio as gr
import pandas as pd
import requests
from PIL import Image
from io import BytesIO
import os
import tempfile
from src.leaderboard.leaderboard_html import create_leaderboard_html
BASE_URL = "https://huggingface.co/datasets/zonszer/demo_source_data/resolve/main"
def load_image_from_url(url):
try:
response = requests.get(url)
return Image.open(BytesIO(response.content))
except:
return None
def load_file_from_url(url):
try:
response = requests.get(url)
file_ext = os.path.splitext(url)[1]
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as tmp_file:
tmp_file.write(response.content)
return tmp_file.name
except:
return None
# Static data - reordered columns: Method, #Param., Input Type, Control Type, Model Type, Mean Traj. ↓, Acc. ↑
STATIC_DATA = [
["w/o WM", "72B", "RGB", "–", "VLM", 6.24, 50.27],
["PathDreamer [36]", "0.69B", "RGB-D; Sem; Pano", "Viewpoint", "Image Gen.", 5.28, 56.99],
["SE3DS [11]", "1.1B", "RGB-D; Pano", "Viewpoint", "Image Gen.", 5.29, 57.53],
["NWM [25]", "1B", "RGB", "Trajectory", "Video Gen.", 5.68, 57.35],
["SVD [6]", "1.5B", "RGB", "Image", "Video Gen.", 5.29, 57.71],
["LTX-Video [5]", "2B", "RGB", "Text", "Video Gen.", 5.37, 56.08],
["Hunyuan [4]", "13B", "RGB", "Text", "Video Gen.", 5.21, 57.71],
["Wan2.1 [23]", "14B", "RGB", "Text", "Video Gen.", 5.24, 58.26],
["Cosmos [1]", "2B", "RGB", "Text", "Video Gen.", 5.898, 52.27],
["Runway", "–", "–", "Text", "Video Gen.", "–", "–"],
["SVD† [6]", "1.5B", "RGB; Pano", "Action", "Video Gen. Post-Train", 5.02, 60.98],
["LTX† [5]", "2B", "RGB; Pano", "Action", "Video Gen. Post-Train", 5.49, 57.53],
["WAN2.1† [23]", "14B", "RGB; Pano", "Action", "Video Gen. Post-Train", "XXX", "XXX"],
["Cosmos† [1]", "2B", "RGB; Pano", "Action", "Video Gen. Post-Train", 5.08, 60.25],
]
COLUMNS = ["Method", "#Param.", "Input Type", "Control Type", "Model Type", "Mean Traj. ↓", "Acc. ↑"]
def create_leaderboard():
df = pd.DataFrame(STATIC_DATA, columns=COLUMNS)
# Sort by accuracy in descending order (highest first), handling non-numeric values
df_clean = df.copy()
# Replace non-numeric values with -1 for sorting (so they appear at bottom)
df_clean['Acc. ↑'] = pd.to_numeric(df_clean['Acc. ↑'], errors='coerce').fillna(-1)
df_sorted = df_clean.sort_values('Acc. ↑', ascending=False)
# Return original df with the sorted order but original values
return df.iloc[df_sorted.index].reset_index(drop=True)
with gr.Blocks(title="World-in-World: Building a Closed-Loop World Interface to Evaluate World Models", theme=gr.themes.Soft()) as demo:
gr.HTML("<h1 style='text-align: center; margin-bottom: 1rem'>🏆 World-in-World: Building a Closed-Loop World Interface to Evaluate World Models</h1>")
with gr.Tabs():
with gr.TabItem("🧑‍🏫 Interactive Demo"):
with open("src/display/demo_new.html", "r", encoding="utf-8") as f:
html_content = f.read()
gr.HTML(html_content)
# with gr.Row():
# # Left Zone: Agent's View
# with gr.Column(scale=2, min_width=350):
# gr.HTML("<h2 style='text-align: center;'>Agent's View</h2>")
# # Mimicking the blue instruction box from the image
# gr.HTML("""
# <div style='background-color: #e6f3ff; border: 1px solid #b3d9ff; border-radius: 8px; padding: 15px; font-family: sans-serif;'>
# <div style='display: flex; align-items: center; margin-bottom: 10px;'>
# <span style='font-size: 24px; margin-right: 10px;'>🧠</span>
# <h3 style='margin: 0; color: #333;'>Instruction:</h3>
# </div>
# <p style='margin: 0; color: #555;'>Navigate to the Toaster in the room and be as close as possible to it.</p>
# </div>
# """)
# # Mimicking the grey planning box from the image
# gr.HTML("""
# <div style='background-color: #f5f5f5; border: 1px solid #e0e0e0; border-radius: 8px; padding: 15px; margin-top: 20px; font-family: sans-serif;'>
# <div style='display: flex; align-items: center; margin-bottom: 10px;'>
# <span style='font-size: 24px; margin-right: 10px;'>🦾</span>
# <h3 style='margin: 0; color: #333;'>Environment Step 4-7:</h3>
# </div>
# <h4 style='margin-top: 10px; margin-bottom: 5px; color: #444;'>Planning:</h4>
# <ol start="4" style='padding-left: 20px; margin: 0; color: #555;'>
# <li>Move leftward by 0.25.</li>
# <li>Move leftward by 0.25.</li>
# <li>Move forward by 0.25.</li>
# <li>Move forward by 0.25.</li>
# </ol>
# </div>
# """)
# # Middle Zone: Closed-Loop Environmental Feedback
# with gr.Column(scale=4, min_width=500):
# gr.HTML("<h2 style='text-align: center; color: #db83b5;'>Closed-Loop Environmental Feedback</h2>")
# with gr.Row():
# gr.Video(value=load_file_from_url(f"{BASE_URL}/AR/FTwan21_lora/5ZKStnWn8Zo/E014/A001/world_model_gen/bbox_gen_video_1.mp4"), label="First Person View", interactive=False)
# gr.Image(value=load_image_from_url(f"{BASE_URL}/scenes_glb/birdEye_5ZKStnWn8Zo.png"), label="Bird's Eye View", type="pil", interactive=False)
# # gr.Model3D(value=load_file_from_url(f"{BASE_URL}/scenes_glb/5ZKStnWn8Zo.glb"), label="3D Scene", interactive=False)
# # Right Zone: World Model's Generation
# with gr.Column(scale=3, min_width=400):
# gr.HTML("<h2 style='text-align: center;'>World Model's Generation</h2>")
# # Using the new video path provided by the user
# gr.Video(value=load_file_from_url(f"{BASE_URL}/AR/FTwan21_lora/5ZKStnWn8Zo/E014/A005/world_model_gen/obj_centered_gen_video_1.mp4"), label="Generated View", interactive=False)
with gr.TabItem("📊 Leaderboard"):
gr.HTML(create_leaderboard_html())
with gr.TabItem("📝 About"):
gr.Markdown("""
# World-in-World: Building a Closed-Loop World Interface to Evaluate World Models
This leaderboard showcases performance metrics across different types of AI models in world modeling tasks:
## Model Categories
- **VLM**: Vision-Language Models
- **Image Gen.**: Image Generation Models
- **Video Gen.**: Video Generation Models
- **Video Gen. Post-Train**: Post-training specialized Video Generation Models
## Metrics Explained
- **Acc. ↑**: Accuracy score (higher values indicate better performance)
- **Mean Traj. ↓**: Mean trajectory error (lower values indicate better performance)
## Notes
- † indicates post-training specialized models
- XXX indicates results pending/unavailable
- – indicates not applicable or not available
*Results represent performance on world modeling evaluation benchmarks and may vary across different evaluation settings.*
""")
if __name__ == "__main__":
demo.launch()