Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,15 @@
|
|
| 1 |
import os
|
| 2 |
# Force CPU-only in this process by hiding CUDA devices (set before importing heavy libs)
|
| 3 |
-
os.environ
|
|
|
|
| 4 |
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
import time
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
# =========================================
|
| 10 |
# Safe Libra Hook (CPU fallback + dtype fix)
|
| 11 |
# This hook must run before any heavyweight libra model-loading occurs.
|
|
@@ -19,14 +23,16 @@ _original_load_pretrained_model = getattr(builder, 'load_pretrained_model', None
|
|
| 19 |
def safe_load_pretrained_model(model_path, model_base=None, model_name=None, **kwargs):
|
| 20 |
print("[INFO] Hook activated: safe_load_pretrained_model()")
|
| 21 |
|
| 22 |
-
#
|
| 23 |
if model_name is None:
|
| 24 |
model_name = model_path
|
| 25 |
|
| 26 |
-
#
|
| 27 |
kwargs = dict(kwargs)
|
| 28 |
-
kwargs
|
| 29 |
-
kwargs
|
|
|
|
|
|
|
| 30 |
|
| 31 |
if _original_load_pretrained_model is None:
|
| 32 |
raise RuntimeError('Original load_pretrained_model not found in builder')
|
|
@@ -50,20 +56,31 @@ def safe_load_pretrained_model(model_path, model_base=None, model_name=None, **k
|
|
| 50 |
# propagate other errors
|
| 51 |
raise
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
vt = model.get_vision_tower()
|
| 61 |
-
vt
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
return tokenizer, model, image_processor, context_len
|
| 69 |
|
|
@@ -80,7 +97,12 @@ def safe_load_model(model_path, model_base=None, model_name=None):
|
|
| 80 |
|
| 81 |
run_libra.load_model = safe_load_model
|
| 82 |
|
| 83 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
from ccd import ccd_eval, run_eval
|
| 85 |
from libra.eval.run_libra import load_model
|
| 86 |
|
|
@@ -88,15 +110,15 @@ from libra.eval.run_libra import load_model
|
|
| 88 |
# Global Configuration
|
| 89 |
# =========================================
|
| 90 |
MODEL_CATALOGUE = {
|
|
|
|
| 91 |
"Libra-v1.0-7B": "X-iZhang/libra-v1.0-7b",
|
| 92 |
-
"Libra-v1.0-3B": "X-iZhang/libra-v1.0-3b",
|
| 93 |
"MAIRA-2": "X-iZhang/libra-maira-2",
|
| 94 |
"LLaVA-Med-v1.5": "X-iZhang/libra-llava-med-v1.5-mistral-7b",
|
| 95 |
"LLaVA-Rad": "X-iZhang/libra-llava-rad",
|
| 96 |
"Med-CXRGen-F": "X-iZhang/Med-CXRGen-F",
|
| 97 |
"Med-CXRGen-I": "X-iZhang/Med-CXRGen-I"
|
| 98 |
}
|
| 99 |
-
DEFAULT_MODEL_NAME = "
|
| 100 |
_loaded_models = {}
|
| 101 |
|
| 102 |
|
|
@@ -104,13 +126,14 @@ _loaded_models = {}
|
|
| 104 |
# Environment Setup
|
| 105 |
# =========================================
|
| 106 |
def setup_environment():
|
| 107 |
-
|
| 108 |
-
print("🔹 Using GPU:", torch.cuda.get_device_name(0))
|
| 109 |
-
else:
|
| 110 |
-
print("🔹 Using CPU")
|
| 111 |
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
| 112 |
os.environ['TRANSFORMERS_CACHE'] = './cache'
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
|
| 116 |
# =========================================
|
|
@@ -125,14 +148,27 @@ def load_or_get_model(model_name: str):
|
|
| 125 |
return _loaded_models[model_path]
|
| 126 |
|
| 127 |
print(f"🔹 Loading model: {model_name} ({model_path}) ...")
|
|
|
|
| 128 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
with torch.no_grad():
|
| 130 |
model = load_model(model_path)
|
|
|
|
| 131 |
_loaded_models[model_path] = model
|
| 132 |
print(f"✅ Loaded successfully: {model_name}")
|
|
|
|
|
|
|
|
|
|
| 133 |
return model
|
| 134 |
except Exception as e:
|
| 135 |
print(f"❌ Error loading model {model_name}: {e}")
|
|
|
|
|
|
|
| 136 |
raise
|
| 137 |
|
| 138 |
|
|
@@ -148,19 +184,25 @@ def generate_ccd_description(
|
|
| 148 |
beta,
|
| 149 |
gamma,
|
| 150 |
use_run_eval,
|
| 151 |
-
max_new_tokens
|
|
|
|
| 152 |
):
|
| 153 |
"""Generate findings using CCD evaluation."""
|
| 154 |
if not current_img:
|
| 155 |
return "⚠️ Please upload or select an example image first."
|
| 156 |
|
| 157 |
try:
|
|
|
|
| 158 |
print(f"🔹 Generating description with model: {selected_model_name}")
|
| 159 |
print(f"🔹 Parameters: alpha={alpha}, beta={beta}, gamma={gamma}")
|
| 160 |
print(f"🔹 Image path: {current_img}")
|
| 161 |
|
|
|
|
| 162 |
model = load_or_get_model(selected_model_name)
|
|
|
|
|
|
|
| 163 |
print(f"🔹 Running CCD with {selected_model_name} and expert model {expert_model}...")
|
|
|
|
| 164 |
ccd_output = ccd_eval(
|
| 165 |
libra_model=model,
|
| 166 |
image=current_img,
|
|
@@ -172,7 +214,10 @@ def generate_ccd_description(
|
|
| 172 |
gamma=gamma
|
| 173 |
)
|
| 174 |
|
|
|
|
|
|
|
| 175 |
if use_run_eval:
|
|
|
|
| 176 |
baseline_output = run_eval(
|
| 177 |
libra_model=model,
|
| 178 |
image=current_img,
|
|
@@ -180,11 +225,13 @@ def generate_ccd_description(
|
|
| 180 |
max_new_tokens=max_new_tokens,
|
| 181 |
num_beams=1
|
| 182 |
)
|
|
|
|
| 183 |
return (
|
| 184 |
f"### 🩺 CCD Result ({expert_model})\n{ccd_output}\n\n"
|
| 185 |
f"---\n### ⚖️ Baseline (run_eval)\n{baseline_output[0]}"
|
| 186 |
)
|
| 187 |
|
|
|
|
| 188 |
return f"### 🩺 CCD Result ({expert_model})\n{ccd_output}"
|
| 189 |
|
| 190 |
except Exception:
|
|
@@ -281,10 +328,16 @@ def main():
|
|
| 281 |
### [Project Page](https://x-izhang.github.io/CCD/) | [Paper](https://arxiv.org/abs/2509.23379) | [Code](https://github.com/X-iZhang/CCD) | [Models](https://huggingface.co/collections/X-iZhang/libra-6772bfccc6079298a0fa5f8d)
|
| 282 |
|
| 283 |
**🚨 Performance Warning**
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
""")
|
| 289 |
|
| 290 |
with gr.Tab("✨ CCD Demo"):
|
|
@@ -347,8 +400,8 @@ def main():
|
|
| 347 |
gamma = gr.Slider(0, 20, value=10, step=1, label="Gamma")
|
| 348 |
|
| 349 |
with gr.Accordion("Advanced Options", open=False):
|
| 350 |
-
max_new_tokens = gr.Slider(10, 256, value=
|
| 351 |
-
use_run_eval = gr.Checkbox(label="Compare with baseline (run_eval)", value=False)
|
| 352 |
|
| 353 |
generate_btn = gr.Button("🚀 Generate", variant="primary")
|
| 354 |
|
|
@@ -396,7 +449,12 @@ def main():
|
|
| 396 |
pass
|
| 397 |
|
| 398 |
|
| 399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
|
| 402 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import os
|
| 2 |
# Force CPU-only in this process by hiding CUDA devices (set before importing heavy libs)
|
| 3 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
| 4 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import gradio as gr
|
| 8 |
import time
|
| 9 |
|
| 10 |
+
# Force CPU device globally by overriding torch.cuda.is_available
|
| 11 |
+
torch.cuda.is_available = lambda: False
|
| 12 |
+
|
| 13 |
# =========================================
|
| 14 |
# Safe Libra Hook (CPU fallback + dtype fix)
|
| 15 |
# This hook must run before any heavyweight libra model-loading occurs.
|
|
|
|
| 23 |
def safe_load_pretrained_model(model_path, model_base=None, model_name=None, **kwargs):
|
| 24 |
print("[INFO] Hook activated: safe_load_pretrained_model()")
|
| 25 |
|
| 26 |
+
# Complete model_name to avoid .lower() on None
|
| 27 |
if model_name is None:
|
| 28 |
model_name = model_path
|
| 29 |
|
| 30 |
+
# Force CPU parameters when calling original function
|
| 31 |
kwargs = dict(kwargs)
|
| 32 |
+
kwargs['device'] = 'cpu'
|
| 33 |
+
kwargs['device_map'] = 'cpu'
|
| 34 |
+
kwargs.setdefault('torch_dtype', torch.float32)
|
| 35 |
+
kwargs.setdefault('low_cpu_mem_usage', True)
|
| 36 |
|
| 37 |
if _original_load_pretrained_model is None:
|
| 38 |
raise RuntimeError('Original load_pretrained_model not found in builder')
|
|
|
|
| 56 |
# propagate other errors
|
| 57 |
raise
|
| 58 |
|
| 59 |
+
# Force all model components to CPU with float32 for compatibility
|
| 60 |
+
print('[INFO] Forcing all components to CPU with float32 dtype...')
|
| 61 |
+
try:
|
| 62 |
+
model = model.to(device='cpu', dtype=torch.float32)
|
| 63 |
+
print('[INFO] Model moved to CPU (float32).')
|
| 64 |
+
except Exception as e:
|
| 65 |
+
print(f"[WARN] Could not move model to cpu/float32: {e}")
|
| 66 |
+
|
| 67 |
+
try:
|
| 68 |
+
if hasattr(model, 'get_vision_tower'):
|
| 69 |
vt = model.get_vision_tower()
|
| 70 |
+
if vt is not None:
|
| 71 |
+
vt = vt.to(device='cpu', dtype=torch.float32)
|
| 72 |
+
print('[INFO] Vision tower moved to CPU (float32).')
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print(f"[WARN] Could not move vision_tower to cpu/float32: {e}")
|
| 75 |
+
|
| 76 |
+
try:
|
| 77 |
+
if hasattr(model, 'get_model'):
|
| 78 |
+
inner_model = model.get_model()
|
| 79 |
+
if inner_model is not None:
|
| 80 |
+
inner_model = inner_model.to(device='cpu', dtype=torch.float32)
|
| 81 |
+
print('[INFO] Inner model moved to CPU (float32).')
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"[WARN] Could not move inner model to cpu/float32: {e}")
|
| 84 |
|
| 85 |
return tokenizer, model, image_processor, context_len
|
| 86 |
|
|
|
|
| 97 |
|
| 98 |
run_libra.load_model = safe_load_model
|
| 99 |
|
| 100 |
+
# Now import CCD and hook ccd_utils to force CPU for expert models
|
| 101 |
+
import ccd.ccd_utils as ccd_utils_module
|
| 102 |
+
ccd_utils_module._DEVICE = torch.device('cpu')
|
| 103 |
+
print('[INFO] Forced ccd_utils._DEVICE to CPU')
|
| 104 |
+
|
| 105 |
+
# Now import the evaluation functions
|
| 106 |
from ccd import ccd_eval, run_eval
|
| 107 |
from libra.eval.run_libra import load_model
|
| 108 |
|
|
|
|
| 110 |
# Global Configuration
|
| 111 |
# =========================================
|
| 112 |
MODEL_CATALOGUE = {
|
| 113 |
+
"Libra-v1.0-3B (⚡Recommended for CPU)": "X-iZhang/libra-v1.0-3b",
|
| 114 |
"Libra-v1.0-7B": "X-iZhang/libra-v1.0-7b",
|
|
|
|
| 115 |
"MAIRA-2": "X-iZhang/libra-maira-2",
|
| 116 |
"LLaVA-Med-v1.5": "X-iZhang/libra-llava-med-v1.5-mistral-7b",
|
| 117 |
"LLaVA-Rad": "X-iZhang/libra-llava-rad",
|
| 118 |
"Med-CXRGen-F": "X-iZhang/Med-CXRGen-F",
|
| 119 |
"Med-CXRGen-I": "X-iZhang/Med-CXRGen-I"
|
| 120 |
}
|
| 121 |
+
DEFAULT_MODEL_NAME = "Libra-v1.0-3B (⚡Recommended for CPU)"
|
| 122 |
_loaded_models = {}
|
| 123 |
|
| 124 |
|
|
|
|
| 126 |
# Environment Setup
|
| 127 |
# =========================================
|
| 128 |
def setup_environment():
|
| 129 |
+
print("🔹 Running in CPU-only mode (forced for Hugging Face Spaces)")
|
|
|
|
|
|
|
|
|
|
| 130 |
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
| 131 |
os.environ['TRANSFORMERS_CACHE'] = './cache'
|
| 132 |
+
|
| 133 |
+
# Set number of threads for CPU inference
|
| 134 |
+
num_threads = min(os.cpu_count() or 4, 8)
|
| 135 |
+
torch.set_num_threads(num_threads)
|
| 136 |
+
print(f"🔹 Using {num_threads} CPU threads")
|
| 137 |
|
| 138 |
|
| 139 |
# =========================================
|
|
|
|
| 148 |
return _loaded_models[model_path]
|
| 149 |
|
| 150 |
print(f"🔹 Loading model: {model_name} ({model_path}) ...")
|
| 151 |
+
print(f"🔹 This may take 2-5 minutes on CPU, please wait...")
|
| 152 |
try:
|
| 153 |
+
# Clear cache before loading to maximize available memory
|
| 154 |
+
import gc
|
| 155 |
+
gc.collect()
|
| 156 |
+
if hasattr(torch.cuda, 'empty_cache'):
|
| 157 |
+
torch.cuda.empty_cache()
|
| 158 |
+
|
| 159 |
with torch.no_grad():
|
| 160 |
model = load_model(model_path)
|
| 161 |
+
|
| 162 |
_loaded_models[model_path] = model
|
| 163 |
print(f"✅ Loaded successfully: {model_name}")
|
| 164 |
+
|
| 165 |
+
# Clean up after loading
|
| 166 |
+
gc.collect()
|
| 167 |
return model
|
| 168 |
except Exception as e:
|
| 169 |
print(f"❌ Error loading model {model_name}: {e}")
|
| 170 |
+
import traceback
|
| 171 |
+
traceback.print_exc()
|
| 172 |
raise
|
| 173 |
|
| 174 |
|
|
|
|
| 184 |
beta,
|
| 185 |
gamma,
|
| 186 |
use_run_eval,
|
| 187 |
+
max_new_tokens,
|
| 188 |
+
progress=gr.Progress()
|
| 189 |
):
|
| 190 |
"""Generate findings using CCD evaluation."""
|
| 191 |
if not current_img:
|
| 192 |
return "⚠️ Please upload or select an example image first."
|
| 193 |
|
| 194 |
try:
|
| 195 |
+
progress(0, desc="Starting inference...")
|
| 196 |
print(f"🔹 Generating description with model: {selected_model_name}")
|
| 197 |
print(f"🔹 Parameters: alpha={alpha}, beta={beta}, gamma={gamma}")
|
| 198 |
print(f"🔹 Image path: {current_img}")
|
| 199 |
|
| 200 |
+
progress(0.1, desc="Loading model (this may take several minutes on CPU)...")
|
| 201 |
model = load_or_get_model(selected_model_name)
|
| 202 |
+
|
| 203 |
+
progress(0.3, desc="Running CCD inference (this may take 5-10 minutes on CPU)...")
|
| 204 |
print(f"🔹 Running CCD with {selected_model_name} and expert model {expert_model}...")
|
| 205 |
+
|
| 206 |
ccd_output = ccd_eval(
|
| 207 |
libra_model=model,
|
| 208 |
image=current_img,
|
|
|
|
| 214 |
gamma=gamma
|
| 215 |
)
|
| 216 |
|
| 217 |
+
progress(0.8, desc="Processing results...")
|
| 218 |
+
|
| 219 |
if use_run_eval:
|
| 220 |
+
progress(0.85, desc="Running baseline comparison...")
|
| 221 |
baseline_output = run_eval(
|
| 222 |
libra_model=model,
|
| 223 |
image=current_img,
|
|
|
|
| 225 |
max_new_tokens=max_new_tokens,
|
| 226 |
num_beams=1
|
| 227 |
)
|
| 228 |
+
progress(1.0, desc="Complete!")
|
| 229 |
return (
|
| 230 |
f"### 🩺 CCD Result ({expert_model})\n{ccd_output}\n\n"
|
| 231 |
f"---\n### ⚖️ Baseline (run_eval)\n{baseline_output[0]}"
|
| 232 |
)
|
| 233 |
|
| 234 |
+
progress(1.0, desc="Complete!")
|
| 235 |
return f"### 🩺 CCD Result ({expert_model})\n{ccd_output}"
|
| 236 |
|
| 237 |
except Exception:
|
|
|
|
| 328 |
### [Project Page](https://x-izhang.github.io/CCD/) | [Paper](https://arxiv.org/abs/2509.23379) | [Code](https://github.com/X-iZhang/CCD) | [Models](https://huggingface.co/collections/X-iZhang/libra-6772bfccc6079298a0fa5f8d)
|
| 329 |
|
| 330 |
**🚨 Performance Warning**
|
| 331 |
+
|
| 332 |
+
This demo is running on **CPU-only** mode. A single inference may take **5-10 minutes** depending on the model and parameters.
|
| 333 |
+
|
| 334 |
+
**Recommendations for faster inference:**
|
| 335 |
+
- Use smaller models (Libra-v1.0-3B is faster than 7B models)
|
| 336 |
+
- Reduce `Max New Tokens` to 64-128 (default: 128)
|
| 337 |
+
- Disable baseline comparison
|
| 338 |
+
- For GPU acceleration, please [run the demo locally](https://github.com/X-iZhang/CCD#gradio-web-interface)
|
| 339 |
+
|
| 340 |
+
**Note:** If you see "Connection Lost", please wait - the inference is still running. The results will appear when complete.
|
| 341 |
""")
|
| 342 |
|
| 343 |
with gr.Tab("✨ CCD Demo"):
|
|
|
|
| 400 |
gamma = gr.Slider(0, 20, value=10, step=1, label="Gamma")
|
| 401 |
|
| 402 |
with gr.Accordion("Advanced Options", open=False):
|
| 403 |
+
max_new_tokens = gr.Slider(10, 256, value=64, step=1, label="Max New Tokens (lower = faster)")
|
| 404 |
+
use_run_eval = gr.Checkbox(label="Compare with baseline (run_eval) [doubles inference time]", value=False)
|
| 405 |
|
| 406 |
generate_btn = gr.Button("🚀 Generate", variant="primary")
|
| 407 |
|
|
|
|
| 449 |
pass
|
| 450 |
|
| 451 |
|
| 452 |
+
# Launch with extended timeout for CPU inference
|
| 453 |
+
demo.queue(max_size=10) # Enable queue for better handling of long-running tasks
|
| 454 |
+
demo.launch(
|
| 455 |
+
max_threads=4, # Limit concurrent requests
|
| 456 |
+
show_error=True # Show detailed errors
|
| 457 |
+
)
|
| 458 |
|
| 459 |
|
| 460 |
if __name__ == "__main__":
|