Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,114 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
|
| 4 |
-
"""
|
| 5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
| 9 |
|
| 10 |
-
def
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
if val[0]:
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
-
messages,
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
| 41 |
|
|
|
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
"""
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
gr.
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
+
def get_data_product_id_from_table(evt: gr.SelectData):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
id=evt.value
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
return get_data_product_id(id)
|
| 11 |
|
| 12 |
+
def get_data_product_id(id):
|
| 13 |
|
| 14 |
+
print(id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
image_path_front = dataset_merged_df.loc[dataset_merged_df['ID'] == id, 'Front photo'].values[0]
|
| 17 |
+
image_path_ingredients = dataset_merged_df.loc[dataset_merged_df['ID'] == id, 'Ingredients photo'].values[0]
|
| 18 |
+
image_path_nutritionals = dataset_merged_df.loc[dataset_merged_df['ID'] == id, 'Nutritionals photo'].values[0]
|
| 19 |
|
| 20 |
+
features = ['brand', 'product_name', 'ingredients', 'energy_kj', 'energy_kcal', 'fat', 'saturated_fat', 'carbohydrates', 'sugars', 'fibers', 'proteins', 'salt']
|
| 21 |
|
| 22 |
+
data = []
|
| 23 |
+
|
| 24 |
+
for feature in features:
|
| 25 |
+
product_values = dataset_merged_df.loc[dataset_merged_df['ID'] == id, [f'Reference_{feature}',f'Predicted_{feature}',f'accuracy_score_{feature}']]
|
| 26 |
+
product_values_list = product_values.values.flatten().tolist()
|
| 27 |
+
data.append([feature]+product_values_list)
|
| 28 |
+
|
| 29 |
+
data = pd.DataFrame(data, columns=['Feature', 'Reference value', 'Predicted value', 'Accuracy score'])
|
| 30 |
+
gradients = 1-data['Accuracy score']
|
| 31 |
+
|
| 32 |
+
data = data.map(lambda x: f'{x:g}' if isinstance(x, float) else x)
|
| 33 |
+
data = data.style.background_gradient(axis=0, gmap=gradients, cmap='summer', vmin=0, vmax=1)
|
| 34 |
+
|
| 35 |
+
plots = [image_path_front, image_path_ingredients, image_path_nutritionals]
|
| 36 |
+
|
| 37 |
+
return {data_df: data,
|
| 38 |
+
data_plot: plots,
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
def load_data(filepath):
|
| 42 |
+
|
| 43 |
+
global dataset_merged_df
|
| 44 |
+
global dataset_metadata
|
| 45 |
+
|
| 46 |
+
dataset_merged_df = pd.read_csv(f"{filepath}")
|
| 47 |
+
dataset_merged_df['mean_accuracy_score'] = dataset_merged_df.filter(regex='^accuracy_score').mean(axis=1)
|
| 48 |
+
|
| 49 |
+
dataset_df = dataset_merged_df[['ID', 'Reference_brand', 'Reference_product_name', 'mean_accuracy_score']].copy()
|
| 50 |
+
dataset_df = dataset_df.style.background_gradient(axis=0, gmap=1-dataset_df['mean_accuracy_score'], cmap='summer', vmin=0, vmax=1)
|
| 51 |
+
|
| 52 |
+
return dataset_df
|
| 53 |
+
|
| 54 |
+
def toggle_row_visibility(show):
|
| 55 |
+
if show:
|
| 56 |
+
return gr.update(visible=True)
|
| 57 |
+
else:
|
| 58 |
+
return gr.update(visible=False)
|
| 59 |
+
|
| 60 |
+
# Custom CSS to set max height for the rows
|
| 61 |
+
custom_css = """
|
| 62 |
+
.dataframe-wrap {
|
| 63 |
+
max-height: 300px; /* Set the desired height */
|
| 64 |
+
overflow-y: scroll;
|
| 65 |
+
}
|
| 66 |
"""
|
| 67 |
+
|
| 68 |
+
with gr.Blocks(css=custom_css) as demo:
|
| 69 |
+
|
| 70 |
+
gr.HTML("<div align='center'><h1>Euroconsumers Food Data Lake</h1>")
|
| 71 |
+
gr.HTML("<div align='center'><h2>Food data processing</h2>")
|
| 72 |
+
|
| 73 |
+
with gr.Row():
|
| 74 |
+
file_input = gr.File(label="Upload CSV File", type="filepath")
|
| 75 |
+
|
| 76 |
+
with gr.Row(visible=False) as dataset_block:
|
| 77 |
+
with gr.Column():
|
| 78 |
+
gr.HTML("<h2>Dataset summary</h2>")
|
| 79 |
+
with gr.Row():
|
| 80 |
+
gr.HTML("Click on a product ID (FIRST COLUMN) in the table to view product details")
|
| 81 |
+
|
| 82 |
+
# Display summary of the dataset - ID, Reference_brand, Reference_product_name, mean_accuracy_score
|
| 83 |
+
with gr.Row(elem_classes="dataframe-wrap"):
|
| 84 |
+
dataframe_component = gr.DataFrame()
|
| 85 |
+
|
| 86 |
+
with gr.Row(visible=False) as product_detail_block:
|
| 87 |
+
with gr.Column():
|
| 88 |
+
# Section for product details
|
| 89 |
+
gr.HTML("<h2>Product details</h2>")
|
| 90 |
+
|
| 91 |
+
# Display product photos
|
| 92 |
+
data_plot = gr.Gallery(label="Product photos", show_label=True, elem_id="gallery"
|
| 93 |
+
, columns=[3], rows=[1], object_fit="contain", height="auto")
|
| 94 |
+
# Display product data
|
| 95 |
+
# https://github.com/gradio-app/gradio/pull/5894
|
| 96 |
+
data_df = gr.Dataframe(label="Product data", scale=2,
|
| 97 |
+
column_widths=["10%", "40%", "40%", "10%"],
|
| 98 |
+
wrap=True)
|
| 99 |
+
|
| 100 |
+
### Control functions
|
| 101 |
+
|
| 102 |
+
# Linking the select_dataset change event to update both the gradio DataFrame and product_ids dropdown
|
| 103 |
+
file_input.change(load_data, inputs=file_input, outputs=dataframe_component)
|
| 104 |
+
# Toggle visibility of the dataset block
|
| 105 |
+
file_input.change(toggle_row_visibility, inputs=file_input, outputs=dataset_block)
|
| 106 |
+
|
| 107 |
+
# Update the product data and plots when a product ID is clicked in the dataframe
|
| 108 |
+
dataframe_component.select(fn=get_data_product_id_from_table, outputs=[data_df, data_plot])
|
| 109 |
+
# Toggle visibility of the product detail block
|
| 110 |
+
dataframe_component.select(toggle_row_visibility, inputs=file_input, outputs=product_detail_block)
|
| 111 |
+
|
| 112 |
+
demo.launch(debug=True)
|
| 113 |
+
|
| 114 |
+
|