Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import numpy as np | |
| import joblib | |
| import pickle | |
| from PIL import Image | |
| from tensorflow.keras.preprocessing.image import img_to_array | |
| from tensorflow.keras.applications.mobilenet_v2 import preprocess_input, MobileNetV2 | |
| from tensorflow.keras.models import Model | |
| # Constants | |
| IMAGE_SIZE = (128, 128) | |
| # Load the trained KNN model | |
| knn_model = joblib.load("knn_animal_classifier.pkl") | |
| # Load class labels | |
| with open("class_labels.pkl", "rb") as f: | |
| class_labels = pickle.load(f) | |
| # Load the MobileNetV2 feature extractor | |
| base_model = MobileNetV2(weights="imagenet", include_top=False, input_shape=(128, 128, 3), pooling="avg") | |
| feature_extractor = Model(inputs=base_model.input, outputs=base_model.output) | |
| # Streamlit UI | |
| st.title("🐾 Animal Image Classifier (KNN + MobileNetV2)") | |
| st.write("Upload an image of an animal to classify it.") | |
| uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| image = Image.open(uploaded_file).convert("RGB") | |
| st.image(image, caption="Uploaded Image", use_column_width=True) | |
| # Preprocess image | |
| img = image.resize(IMAGE_SIZE) | |
| img_array = img_to_array(img) | |
| img_array = preprocess_input(img_array) | |
| img_array = np.expand_dims(img_array, axis=0) | |
| # Extract features and predict | |
| features = feature_extractor.predict(img_array) | |
| prediction = knn_model.predict(features)[0] | |
| st.success(f"🧠 Predicted Animal: **{prediction}**") | |