import chromadb from chromadb.config import Settings from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings import streamlit as st def initialize_vector_db(persist_dir: str): # Initialize ChromaDB client with proper settings client = chromadb.PersistentClient( path=persist_dir, settings=Settings(anonymized_telemetry=False) ) # THIS PARENTHESIS WAS MISSING # Create embeddings embedding_func = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2" ) # Initialize Chroma vector store vector_db = Chroma( client=client, collection_name="document_embeddings", embedding_function=embedding_func, persist_directory=persist_dir ) return vector_db def add_to_collection(chunks: list): db = get_vector_db() db.add_texts(texts=chunks) db.persist() return True def get_vector_db(): return st.session_state.vector_db