Spaces:
Runtime error
Runtime error
| import os | |
| os.environ["OMP_NUM_THREADS"] = "1" | |
| import gradio as gr | |
| import torch | |
| # 【关键修改】不再用 AutoTokenizer,改用 GPT2Tokenizer | |
| from transformers import GPT2Tokenizer, SiglipImageProcessor, AutoModelForCausalLM | |
| from PIL import Image | |
| import re | |
| # --- 模型配置 --- | |
| model_id = "starvector/starvector-1b-im2svg" | |
| print(f"正在加载模型: {model_id} ...") | |
| # 1. 加载图片处理器 | |
| try: | |
| image_processor = SiglipImageProcessor.from_pretrained(model_id, trust_remote_code=True) | |
| except: | |
| from transformers import AutoImageProcessor | |
| image_processor = AutoImageProcessor.from_pretrained(model_id, trust_remote_code=True) | |
| # 2. 加载 Tokenizer | |
| print("正在加载 Tokenizer (强制使用 GPT2 Python 版)...") | |
| # 【核心修复】 | |
| # StarVector-1B 基于 StarCoder (GPT2架构)。 | |
| # 直接使用 GPT2Tokenizer 可以避开 AutoTokenizer 强制读取 tokenizer.json 导致的报错。 | |
| # 这个类只读取 vocab.json,兼容性最好。 | |
| tokenizer = GPT2Tokenizer.from_pretrained(model_id, trust_remote_code=True) | |
| # 确保 pad_token 存在 (GPT2 默认没有 pad_token,StarCoder 通常用 eos 作为 pad) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| # 3. 加载模型 | |
| print("正在加载主模型 (FP16)...") | |
| # 1B 模型很小,直接加载到 CPU 没问题,不会 OOM | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.float16, | |
| trust_remote_code=True | |
| # 不使用 device_map,防止 Meta Tensor 报错 | |
| ) | |
| print("正在移动模型到 GPU...") | |
| model.to("cuda") | |
| print("模型加载完成!") | |
| # --- 推理函数 --- | |
| def convert_image_to_svg(image): | |
| if image is None: | |
| return "请上传图片", "" | |
| try: | |
| # 预处理图片 | |
| image_inputs = image_processor(image, return_tensors="pt") | |
| # 确保数据在 GPU 上且精度匹配 | |
| pixel_values = image_inputs.pixel_values.to("cuda").to(torch.float16) | |
| # 预处理文本 | |
| text_prompt = "Generate SVG code" | |
| text_inputs = tokenizer(text_prompt, return_tensors="pt") | |
| input_ids = text_inputs.input_ids.to("cuda") | |
| attention_mask = text_inputs.attention_mask.to("cuda") | |
| # 生成 | |
| with torch.no_grad(): | |
| generated_ids = model.generate( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| pixel_values=pixel_values, | |
| max_new_tokens=2048, | |
| do_sample=False, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| # 解码 | |
| generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
| svg_code = extract_svg_content(generated_text) | |
| return svg_code, svg_code | |
| except Exception as e: | |
| import traceback | |
| traceback.print_exc() | |
| return f"生成出错: {str(e)}", "" | |
| def extract_svg_content(text): | |
| pattern = r"(<svg.*?</svg>)" | |
| match = re.search(pattern, text, re.DOTALL) | |
| if match: | |
| return match.group(1) | |
| if "```xml" in text: | |
| return text.split("```xml")[1].split("```")[0] | |
| if "```svg" in text: | |
| return text.split("```svg")[1].split("```")[0] | |
| if "xmlns=" in text and "<svg" in text: | |
| start = text.find("<svg") | |
| end = text.rfind("</svg>") + 6 | |
| if start != -1 and end != -1: | |
| return text[start:end] | |
| return text | |
| # --- 界面 --- | |
| with gr.Blocks(title="StarVector-1B") as demo: | |
| gr.Markdown("# StarVector-1B Image to SVG") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(type="pil", label="上传图片") | |
| run_btn = gr.Button("生成 SVG", variant="primary") | |
| with gr.Column(): | |
| html_output = gr.HTML(label="SVG 预览") | |
| code_output = gr.Code(language="xml", label="SVG 代码") | |
| run_btn.click( | |
| fn=convert_image_to_svg, | |
| inputs=[input_image], | |
| outputs=[code_output, html_output] | |
| ) | |
| demo.launch(server_name="0.0.0.0", server_port=7860) |