Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| st.set_page_config(page_title="Turkish Review Analysis - via AG", page_icon='📖') | |
| st.header("📖Movie Review Analysis - TR") | |
| with st.sidebar: | |
| hf_key = st.text_input("HuggingFace Access Key", key="hf_key", type="password") | |
| MODEL_MOVIE = { | |
| "albert": "anilguven/albert_tr_turkish_movie_reviews", # Add the emoji for the Meta-Llama model | |
| "distilbert": "anilguven/distilbert_tr_turkish_movie_reviews", | |
| "bert": "anilguven/bert_tr_turkish_movie_reviews", | |
| "electra": "anilguven/electra_tr_turkish_movie_reviews", | |
| } | |
| MODEL_MOVIES = ["albert","distilbert","bert","electra"] | |
| # Use a pipeline as a high-level helper | |
| from transformers import pipeline | |
| # Create a mapping from formatted model names to their original identifiers | |
| def format_model_name(model_key): | |
| name_parts = model_key | |
| formatted_name = ''.join(name_parts) # Join them into a single string with title case | |
| return formatted_name | |
| formatted_names_to_identifiers = { | |
| format_model_name(key): key for key in MODEL_MOVIE.keys() | |
| } | |
| with st.expander("About this app"): | |
| st.write(f""" | |
| 1-Choose your model for movie review analysis (negative or positive).\n | |
| 2-Enter your sample text.\n | |
| 3-And model predict your text's result. | |
| """) | |
| # Debug to ensure names are formatted correctly | |
| #st.write("Formatted Model Names to Identifiers:", formatted_names_to_identifiers) | |
| model_name: str = st.selectbox("Model", options=MODEL_MOVIES) | |
| selected_model = MODEL_MOVIE[model_name] | |
| if not hf_key: | |
| st.info("Please add your HuggingFace Access Key to continue.") | |
| st.stop() | |
| access_token = hf_key | |
| pipe = pipeline("text-classification", model=selected_model, token=access_token) | |
| #from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| #tokenizer = AutoTokenizer.from_pretrained(selected_model) | |
| #pipe = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=selected_model) | |
| comment = st.text_input("Enter your text for analysis")#User input | |
| st.text('') | |
| if st.button("Submit for Analysis"):#User Review Button | |
| if not hf_key: | |
| st.info("Please add your HuggingFace Access Key to continue.") | |
| st.stop() | |
| else: | |
| result = pipe(comment)[0] | |
| label='' | |
| if result["label"] == "LABEL_0": label = "Negative" | |
| else: label = "Positive" | |
| st.text(label + " comment with " + str(result["score"]) + " accuracy") | |