Spaces:
Running
Running
| """ | |
| Configuration file for LLM provider | |
| Change LLM_PROVIDER to switch between different models | |
| """ | |
| import os | |
| # Swappable LLM provider (environment configurable) | |
| LLM_PROVIDER = os.getenv("LLM_PROVIDER", "beam") # Options: "beam", "huggingface", "local" | |
| # API Keys (set these as environment variables in HuggingFace Space secrets) | |
| BEAM_API_URL = os.getenv("BEAM_API_URL", "") | |
| BEAM_API_TOKEN = os.getenv("BEAM_API_TOKEN", "") | |
| HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY", "") | |
| # Model configurations | |
| HUGGINGFACE_MODEL = "google/gemma-2-2b-it" | |
| # Local model configuration (for quantized models hosted within the Space) | |
| LOCAL_MODEL_REPO = os.getenv("LOCAL_MODEL_REPO", "bartowski/Qwen_Qwen3-4B-Instruct-2507-GGUF") | |
| LOCAL_MODEL_FILENAME = os.getenv("LOCAL_MODEL_FILENAME", "Qwen_Qwen3-4B-Instruct-2507-Q4_K_M.gguf") # Q4_K_M (2.50GB, recommended) | |
| LOCAL_MODEL_CONTEXT_LENGTH = int(os.getenv("LOCAL_MODEL_CONTEXT_LENGTH", "2048")) | |
| LOCAL_MODEL_THREADS = int(os.getenv("LOCAL_MODEL_THREADS", str(os.cpu_count() or 2))) # HF Spaces has 2 vCPUs | |
| LOCAL_MODEL_BATCH_SIZE = int(os.getenv("LOCAL_MODEL_BATCH_SIZE", "1024")) # Optimal for CPU throughput | |
| LOCAL_MODEL_MAX_OUTPUT_TOKENS = int(os.getenv("LOCAL_MODEL_MAX_OUTPUT_TOKENS", "100")) # Shorter responses for faster UX | |
| LOCAL_MODEL_HF_TOKEN = os.getenv("LOCAL_MODEL_HF_TOKEN", HUGGINGFACE_API_KEY or "") | |
| # Access control configuration | |
| CLIENT_APP_ORIGINS = [ | |
| origin.strip() | |
| for origin in os.getenv("CLIENT_APP_ORIGINS", "").split(",") | |
| if origin.strip() | |
| ] | |
| API_ACCESS_TOKEN = os.getenv("API_ACCESS_TOKEN", "") | |
| # Session token configuration | |
| SESSION_TOKEN_SECRET = os.getenv("SESSION_TOKEN_SECRET", "") | |
| SESSION_TOKEN_TTL_SECONDS = int(os.getenv("SESSION_TOKEN_TTL_SECONDS", "600")) | |
| # RAG Configuration | |
| EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2" # Fast, lightweight | |
| CHUNK_SIZE = 300 # Characters per chunk (reduced for faster inference) | |
| CHUNK_OVERLAP = 30 # Overlap between chunks | |
| TOP_K_RESULTS = 3 # Retrieve top 3 most relevant chunks (more context for GPU inference) | |
| # System prompt for the chatbot | |
| SYSTEM_PROMPT = """Answer questions about Bi using the provided context. Keep answers short and direct. Always refer to Bi by name.""" | |