Spaces:
Sleeping
Sleeping
| import torch | |
| import gradio as gr | |
| from transformers import pipeline | |
| # Check CUDA availability | |
| print("CUDA available:", torch.cuda.is_available()) | |
| if torch.cuda.is_available(): | |
| print("GPU Device:", torch.cuda.get_device_name(0)) | |
| # Initialize the summarization pipeline with GPU support | |
| device = 0 if torch.cuda.is_available() else -1 | |
| text_summary = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", torch_dtype=torch.bfloat16, device=device) | |
| # Function to summarize text | |
| def summary(input): | |
| output = text_summary(input, max_length=130, min_length=30, do_sample=False) # Fixed pipeline name | |
| return output[0]['summary_text'] | |
| # Create the Gradio Interface | |
| gr.close_all() | |
| demo = gr.Interface( | |
| fn=summary, | |
| inputs=[gr.Textbox(label="Input Text to Summarize", lines=10)], | |
| outputs=[gr.Textbox(label="Summarized Text", lines=6)], | |
| title="A.C. Text Summarizer", | |
| description="This application will be used to create summarized text" | |
| ) | |
| # Launch the interface | |
| demo.launch(share=True) |