File size: 8,091 Bytes
cb0bcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f4258
 
 
39680ea
cb0bcdc
 
 
 
 
 
39680ea
cb0bcdc
39680ea
cb0bcdc
 
 
 
 
 
 
 
39680ea
cb0bcdc
39680ea
cb0bcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ee227
cb0bcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ecf0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gradio as gr
import os
import tempfile
import shutil
import subprocess
import re
import json
import datetime
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download
from safetensors.torch import save_file
import torch

# --- Utility: GGUF to FP8 Safetensors using gguf-connector CLI ---
def convert_gguf_to_fp8_safetensors(gguf_path, output_dir, progress=gr.Progress()):
    """
    Uses gguf-connector CLI to convert a GGUF file to FP8 safetensors.
    Requires 'gguf-connector' and 'torch' installed.
    """
    progress(0.1, desc="Starting GGUF to FP8 conversion...")

    try:
        # Ensure gguf-connector is installed by checking for the 'ggc' command
        subprocess.run(["ggc", "--version"], check=True, capture_output=True)
        
        # Build command: ggc t3a (GGUF β†’ safetensors), then q8 (safetensors β†’ FP8)
        temp_safetensors_dir = tempfile.mkdtemp()
        safetensors_path = os.path.join(temp_safetensors_dir, "intermediate.safetensors")
        fp8_safetensors_path = os.path.join(output_dir, "model.safetensors")

        progress(0.3, desc="Converting GGUF to Safetensors...")
        # Step 1: GGUF β†’ Safetensors
        # CORRECTED: Using 't3a' subcommand and positional arguments
        result1 = subprocess.run(
            ["ggc", "t3a", gguf_path, safetensors_path],
            capture_output=True,
            text=True
        )
        if result1.returncode != 0:
            raise RuntimeError(f"GGUF to Safetensors failed: {result1.stderr}")

        progress(0.6, desc="Quantizing Safetensors to FP8...")
        # Step 2: Safetensors β†’ FP8 Safetensors
        # CORRECTED: Using 'q8' subcommand for FP8 quantization and positional arguments
        result2 = subprocess.run(
            ["ggc", "q8", safetensors_path, fp8_safetensors_path],
            capture_output=True,
            text=True
        )
        if result2.returncode != 0:
            raise RuntimeError(f"Safetensors to FP8 failed: {result2.stderr}")

        # Create minimal config.json and tokenizer.json
        config_path = os.path.join(output_dir, "config.json")
        with open(config_path, "w") as f:
            json.dump({
                "model_type": "qwen",
                "quantization": "fp8",
                "architectures": ["QwenForCausalLM"]
            }, f)

        tokenizer_path = os.path.join(output_dir, "tokenizer.json")
        with open(tokenizer_path, "w") as f:
            json.dump({"model_type": "qwen", "vocab_size": 152064}, f)

        progress(1.0, desc="Conversion to FP8 Safetensors complete!")
        return True, "Conversion successful."

    except Exception as e:
        return False, str(e)
    finally:
        if 'temp_safetensors_dir' in locals():
            shutil.rmtree(temp_safetensors_dir, ignore_errors=True)

# --- Main Processing Function ---
def process_and_upload(gguf_url, hf_token, new_repo_id, private_repo, progress=gr.Progress()):
    if not all([gguf_url, hf_token, new_repo_id]):
        return None, "❌ Error: Please fill in all fields.", ""

    if not re.match(r"^[a-zA-Z0-9._-]+/[a-zA-Z0-9._-]+$", new_repo_id):
        return None, "❌ Error: Invalid repository ID format. Use 'username/model-name'.", ""

    temp_download_dir = tempfile.mkdtemp()
    final_output_dir = tempfile.mkdtemp()

    try:
        # Authenticate
        progress(0.05, desc="Logging into Hugging Face...")
        api = HfApi(token=hf_token)
        user_info = api.whoami()
        user_name = user_info['name']
        progress(0.1, desc=f"Logged in as {user_name}.")

        # Parse URL
        clean_url = gguf_url.strip()
        if "huggingface.co" not in clean_url:
            return None, "❌ Error: URL must be from Hugging Face.", ""
        parts = clean_url.replace("https://huggingface.co/", "").split("/")
        if len(parts) < 3 or not parts[-1].endswith(".gguf"):
            return None, "❌ Error: Invalid GGUF URL format.", ""
        repo_id = "/".join(parts[:2])
        filename = parts[-1]

        # Download
        progress(0.15, desc="Downloading GGUF file...")
        gguf_path = hf_hub_download(
            repo_id=repo_id,
            filename=filename,
            cache_dir=temp_download_dir,
            resume_download=True,
            token=hf_token
        )
        progress(0.3, desc=f"Downloaded '{filename}'.")

        # Convert
        success, msg = convert_gguf_to_fp8_safetensors(gguf_path, final_output_dir, progress)
        if not success:
            return None, f"❌ Conversion failed: {msg}", ""

        progress(0.8, desc="Preparing upload...")

        # Create repo
        repo_url = api.create_repo(
            repo_id=new_repo_id,
            private=private_repo,
            repo_type="model",
            exist_ok=True
        )

        # Generate README
        readme_content = f"""---
license: other
library_name: transformers
tags:
- gguf
- fp8
- safetensors
- converted-by-gradio
- gguf-to-fp8
model-index:
- name: {new_repo_id.split('/')[-1]}
  results: []
---

# Model Card for {new_repo_id}

Converted from GGUF:
- **Source:** `{gguf_url}`
- **Filename:** `{filename}`

## Conversion
Dequantized from GGUF and requantized to **FP8** using `gguf-connector`.
- **Converted by:** {user_name}
- **Date:** {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
"""
        with open(os.path.join(final_output_dir, "README.md"), "w", encoding="utf-8") as f:
            f.write(readme_content)

        # Upload
        progress(0.9, desc="Uploading to Hugging Face Hub...")
        api.upload_folder(
            repo_id=new_repo_id,
            folder_path=final_output_dir,
            repo_type="model",
            token=hf_token,
            commit_message="Upload FP8 Safetensors model converted via gguf-connector"
        )

        progress(1.0, desc="βœ… Upload complete!")
        result_html = f"""
βœ… Success!
Your FP8 Safetensors model is ready.

**Repository:** [{new_repo_id}](https://huggingface.co/{new_repo_id})  
**Visibility:** {'Private' if private_repo else 'Public'}
"""
        return gr.HTML(result_html), "βœ… Conversion and upload completed!", ""

    except Exception as e:
        return None, f"❌ Unexpected error: {str(e)}", ""
    finally:
        shutil.rmtree(temp_download_dir, ignore_errors=True)
        shutil.rmtree(final_output_dir, ignore_errors=True)

# --- Gradio Interface ---
with gr.Blocks(title="GGUF β†’ FP8 Safetensors Converter") as demo:
    gr.Markdown("# πŸ”„ GGUF to FP8 Safetensors Converter")
    gr.Markdown("Uses `gguf-connector` to dequantize GGUF β†’ Safetensors β†’ FP8, then uploads to your Hugging Face account.")

    with gr.Row():
        with gr.Column():
            gguf_url = gr.Textbox(
                label="GGUF File URL",
                placeholder="https://huggingface.co/unsloth/Qwen3-4B-GGUF/resolve/main/qwen3-4b.Q5_K_M.gguf",
                info="Must be a direct .gguf file URL from Hugging Face."
            )
            hf_token = gr.Textbox(
                label="Hugging Face Token",
                type="password",
                info="Token with write access. Get it at https://huggingface.co/settings/tokens"
            )
        with gr.Column():
            new_repo_id = gr.Textbox(
                label="New Repository ID",
                placeholder="your-username/qwen3-4b-fp8",
                info="Format: username/model-name"
            )
            private_repo = gr.Checkbox(label="Make Repository Private", value=False)

    convert_btn = gr.Button("πŸš€ Convert & Upload", variant="primary")

    with gr.Row():
        status_output = gr.Markdown()
        repo_link_output = gr.HTML()

    convert_btn.click(
        fn=process_and_upload,
        inputs=[gguf_url, hf_token, new_repo_id, private_repo],
        outputs=[repo_link_output, status_output],
        show_progress=True
    )

    gr.Examples(
        examples=[
            ["https://huggingface.co/unsloth/Qwen3-4B-GGUF/resolve/main/qwen3-4b.Q5_K_M.gguf"]
        ],
        inputs=[gguf_url]
    )

demo.launch()