Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,140 +21,6 @@ try:
|
|
| 21 |
except ImportError:
|
| 22 |
MODELScope_AVAILABLE = False
|
| 23 |
|
| 24 |
-
def low_rank_decomposition(weight, rank=64):
|
| 25 |
-
"""
|
| 26 |
-
Correct LoRA decomposition supporting 2D and 4D tensors.
|
| 27 |
-
Returns (lora_A, lora_B) such that weight β lora_B @ lora_A for 2D,
|
| 28 |
-
or appropriate conv form for 4D.
|
| 29 |
-
"""
|
| 30 |
-
original_shape = weight.shape
|
| 31 |
-
original_dtype = weight.dtype
|
| 32 |
-
try:
|
| 33 |
-
if weight.ndim == 2:
|
| 34 |
-
actual_rank = min(rank, min(weight.shape) // 2)
|
| 35 |
-
if actual_rank < 4:
|
| 36 |
-
return None, None
|
| 37 |
-
U, S, Vh = torch.linalg.svd(weight.float(), full_matrices=False)
|
| 38 |
-
S_sqrt = torch.sqrt(S[:actual_rank])
|
| 39 |
-
# Standard LoRA factorization: W β W_B @ W_A
|
| 40 |
-
W_A = (Vh[:actual_rank, :] * S_sqrt.unsqueeze(1)).contiguous() # [rank, in_features]
|
| 41 |
-
W_B = (U[:, :actual_rank] * S_sqrt.unsqueeze(0)).contiguous() # [out_features, rank]
|
| 42 |
-
return W_A.to(original_dtype), W_B.to(original_dtype)
|
| 43 |
-
elif weight.ndim == 4:
|
| 44 |
-
out_ch, in_ch, k_h, k_w = weight.shape
|
| 45 |
-
if k_h * k_w <= 9: # small conv kernels (e.g., 3x3)
|
| 46 |
-
# Reshape to 2D: [out_ch, in_ch * k_h * k_w]
|
| 47 |
-
weight_2d = weight.view(out_ch, -1)
|
| 48 |
-
actual_rank = min(rank, min(weight_2d.shape) // 2)
|
| 49 |
-
if actual_rank < 4:
|
| 50 |
-
return None, None
|
| 51 |
-
U, S, Vh = torch.linalg.svd(weight_2d.float(), full_matrices=False)
|
| 52 |
-
S_sqrt = torch.sqrt(S[:actual_rank])
|
| 53 |
-
W_A_2d = (Vh[:actual_rank, :] * S_sqrt.unsqueeze(1)).contiguous()
|
| 54 |
-
W_B_2d = (U[:, :actual_rank] * S_sqrt.unsqueeze(0)).contiguous()
|
| 55 |
-
# Reshape back to conv format
|
| 56 |
-
W_A = W_A_2d.view(actual_rank, in_ch, k_h, k_w).contiguous()
|
| 57 |
-
W_B = W_B_2d.view(out_ch, actual_rank, 1, 1).contiguous()
|
| 58 |
-
return W_A.to(original_dtype), W_B.to(original_dtype)
|
| 59 |
-
return None, None
|
| 60 |
-
except Exception as e:
|
| 61 |
-
print(f"Decomposition error for {original_shape}: {e}")
|
| 62 |
-
traceback.print_exc()
|
| 63 |
-
return None, None
|
| 64 |
-
|
| 65 |
-
def extract_correction_factors(original_weight, fp8_weight):
|
| 66 |
-
"""Extract per-channel/tensor correction factors (difference method)."""
|
| 67 |
-
with torch.no_grad():
|
| 68 |
-
# Convert to float32 for precision
|
| 69 |
-
orig = original_weight.float()
|
| 70 |
-
quant = fp8_weight.float()
|
| 71 |
-
|
| 72 |
-
# Compute error (what needs to be added to FP8 to recover original)
|
| 73 |
-
error = orig - quant
|
| 74 |
-
|
| 75 |
-
# Skip if error is negligible
|
| 76 |
-
error_norm = torch.norm(error)
|
| 77 |
-
orig_norm = torch.norm(orig)
|
| 78 |
-
if orig_norm > 1e-6 and error_norm / orig_norm < 0.01:
|
| 79 |
-
return None
|
| 80 |
-
|
| 81 |
-
# For 4D tensors (common in VAE, CNNs)
|
| 82 |
-
if orig.ndim == 4:
|
| 83 |
-
# Channel dimension is typically dimension 0 (output channels)
|
| 84 |
-
channel_dim = 0
|
| 85 |
-
# Compute mean error per output channel
|
| 86 |
-
channel_mean = error.mean(dim=tuple(i for i in range(1, orig.ndim)), keepdim=True)
|
| 87 |
-
return channel_mean.to(original_weight.dtype)
|
| 88 |
-
|
| 89 |
-
# For 2D tensors (linear layers)
|
| 90 |
-
elif orig.ndim == 2:
|
| 91 |
-
# Compute mean error per output row
|
| 92 |
-
row_mean = error.mean(dim=1, keepdim=True)
|
| 93 |
-
return row_mean.to(original_weight.dtype)
|
| 94 |
-
|
| 95 |
-
# For 1D tensors (bias, batchnorm)
|
| 96 |
-
else:
|
| 97 |
-
return error.mean().to(original_weight.dtype)
|
| 98 |
-
|
| 99 |
-
def get_tensor_info(tensor):
|
| 100 |
-
"""Get detailed tensor information for pattern matching."""
|
| 101 |
-
shape = list(tensor.shape)
|
| 102 |
-
dim = tensor.dim()
|
| 103 |
-
numel = tensor.numel()
|
| 104 |
-
dtype = str(tensor.dtype)
|
| 105 |
-
|
| 106 |
-
# Determine tensor type based on shape
|
| 107 |
-
tensor_type = "other"
|
| 108 |
-
if dim == 4 and shape[2] == shape[3]: # Convolutional layer with square kernel
|
| 109 |
-
tensor_type = "conv"
|
| 110 |
-
elif dim == 2:
|
| 111 |
-
if shape[0] > shape[1] * 4: # More likely to be output projection
|
| 112 |
-
tensor_type = "output_proj"
|
| 113 |
-
elif shape[1] > shape[0] * 4: # More likely to be input projection
|
| 114 |
-
tensor_type = "input_proj"
|
| 115 |
-
else:
|
| 116 |
-
tensor_type = "linear"
|
| 117 |
-
elif dim == 1:
|
| 118 |
-
tensor_type = "bias"
|
| 119 |
-
|
| 120 |
-
return {
|
| 121 |
-
"shape": shape,
|
| 122 |
-
"dim": dim,
|
| 123 |
-
"numel": numel,
|
| 124 |
-
"type": tensor_type,
|
| 125 |
-
"dtype": dtype
|
| 126 |
-
}
|
| 127 |
-
|
| 128 |
-
def matches_pattern(key, tensor_info, pattern):
|
| 129 |
-
"""Check if a tensor matches a pattern definition."""
|
| 130 |
-
key_lower = key.lower()
|
| 131 |
-
|
| 132 |
-
# Match by key name pattern
|
| 133 |
-
if "key_pattern" in pattern:
|
| 134 |
-
key_pattern = pattern["key_pattern"].lower()
|
| 135 |
-
if key_pattern != "all" and key_pattern not in key_lower:
|
| 136 |
-
return False
|
| 137 |
-
|
| 138 |
-
# Match by tensor dimension
|
| 139 |
-
if "dim" in pattern and tensor_info["dim"] != pattern["dim"]:
|
| 140 |
-
return False
|
| 141 |
-
|
| 142 |
-
# Match by tensor type
|
| 143 |
-
if "type" in pattern and tensor_info["type"] != pattern["type"]:
|
| 144 |
-
return False
|
| 145 |
-
|
| 146 |
-
# Match by minimum tensor size
|
| 147 |
-
if "min_size" in pattern and tensor_info["numel"] < pattern["min_size"]:
|
| 148 |
-
return False
|
| 149 |
-
|
| 150 |
-
# Match by shape constraints
|
| 151 |
-
if "shape_contains" in pattern:
|
| 152 |
-
shape_contains = pattern["shape_contains"]
|
| 153 |
-
if not any(shape_contains == dim for dim in tensor_info["shape"]):
|
| 154 |
-
return False
|
| 155 |
-
|
| 156 |
-
return True
|
| 157 |
-
|
| 158 |
def load_model_files(model_paths, model_format="safetensors", progress_callback=None):
|
| 159 |
"""
|
| 160 |
Load model weights from one or more files, supporting sharded safetensors and other formats.
|
|
@@ -279,10 +145,10 @@ def extract_base_name_from_sharded_files(model_paths):
|
|
| 279 |
|
| 280 |
return base_name
|
| 281 |
|
| 282 |
-
def
|
| 283 |
-
|
| 284 |
-
"""
|
| 285 |
-
progress(0.05, desc=f"Starting FP8 conversion
|
| 286 |
try:
|
| 287 |
metadata = read_model_metadata(model_paths, model_format)
|
| 288 |
progress(0.1, desc="Loaded metadata.")
|
|
@@ -300,121 +166,63 @@ def convert_model_to_fp8_with_recovery(model_paths, output_dir, fp8_format, reco
|
|
| 300 |
|
| 301 |
# Initialize outputs
|
| 302 |
sd_fp8 = {}
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
"
|
| 306 |
-
"
|
| 307 |
-
"
|
| 308 |
-
"recovery_counts": {"lora": 0, "diff": 0},
|
| 309 |
-
"rule_matches": {i: 0 for i in range(len(recovery_rules))}
|
| 310 |
}
|
| 311 |
|
| 312 |
# Process each tensor
|
| 313 |
total = len(state_dict)
|
| 314 |
for i, key in enumerate(state_dict):
|
| 315 |
-
|
|
|
|
|
|
|
| 316 |
weight = state_dict[key]
|
| 317 |
-
tensor_info = get_tensor_info(weight)
|
| 318 |
|
|
|
|
| 319 |
if weight.dtype in [torch.float16, torch.float32, torch.bfloat16]:
|
| 320 |
fp8_weight = weight.to(fp8_dtype)
|
| 321 |
sd_fp8[key] = fp8_weight
|
|
|
|
| 322 |
else:
|
|
|
|
| 323 |
sd_fp8[key] = weight
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
# Find matching rule for this tensor
|
| 328 |
-
recovery_applied = False
|
| 329 |
-
matched_rule_index = -1
|
| 330 |
-
|
| 331 |
-
for rule_idx, rule in enumerate(recovery_rules):
|
| 332 |
-
if matches_pattern(key, tensor_info, rule):
|
| 333 |
-
matched_rule_index = rule_idx
|
| 334 |
-
recovery_method = rule["method"]
|
| 335 |
-
|
| 336 |
-
try:
|
| 337 |
-
if recovery_method == "lora" and weight.ndim == 2:
|
| 338 |
-
# LoRA recovery for 2D tensors only
|
| 339 |
-
rank = rule.get("rank", 64)
|
| 340 |
-
# Adjust rank for smaller matrices
|
| 341 |
-
adjusted_rank = min(rank, min(weight.shape) // 2)
|
| 342 |
-
if adjusted_rank >= 4:
|
| 343 |
-
A, B = low_rank_decomposition(weight, rank=adjusted_rank)
|
| 344 |
-
if A is not None and B is not None:
|
| 345 |
-
recovery_weights[f"lora_A.{key}"] = A
|
| 346 |
-
recovery_weights[f"lora_B.{key}"] = B
|
| 347 |
-
stats["processed_layers"] += 1
|
| 348 |
-
stats["recovery_counts"]["lora"] += 1
|
| 349 |
-
stats["rule_matches"][rule_idx] += 1
|
| 350 |
-
recovery_applied = True
|
| 351 |
-
break
|
| 352 |
-
|
| 353 |
-
elif recovery_method == "diff":
|
| 354 |
-
# Difference/correction recovery for any tensor type
|
| 355 |
-
corr = extract_correction_factors(weight, fp8_weight)
|
| 356 |
-
if corr is not None:
|
| 357 |
-
recovery_weights[f"diff.{key}"] = corr
|
| 358 |
-
stats["processed_layers"] += 1
|
| 359 |
-
stats["recovery_counts"]["diff"] += 1
|
| 360 |
-
stats["rule_matches"][rule_idx] += 1
|
| 361 |
-
recovery_applied = True
|
| 362 |
-
break
|
| 363 |
-
|
| 364 |
-
# If method is "none" or recovery failed, continue to next rule
|
| 365 |
-
if recovery_method == "none":
|
| 366 |
-
break
|
| 367 |
-
|
| 368 |
-
except Exception as e:
|
| 369 |
-
stats["skipped_layers"].append(f"{key}: error with rule {rule_idx} - {str(e)}")
|
| 370 |
-
|
| 371 |
-
if not recovery_applied:
|
| 372 |
-
reason = "no matching rule" if matched_rule_index == -1 else f"recovery failed with rule {matched_rule_index}"
|
| 373 |
-
stats["skipped_layers"].append(f"{key}: {reason}")
|
| 374 |
|
| 375 |
# Extract base name for output files
|
| 376 |
base_name = extract_base_name_from_sharded_files(model_paths)
|
| 377 |
|
| 378 |
# Save FP8 model
|
| 379 |
fp8_path = os.path.join(output_dir, f"{base_name}-fp8-{fp8_format}.safetensors")
|
| 380 |
-
save_file(sd_fp8, fp8_path, metadata={
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
"format": model_format,
|
| 388 |
-
"fp8_format": fp8_format,
|
| 389 |
-
"recovery_rules": json.dumps(recovery_rules),
|
| 390 |
-
"stats": json.dumps(stats)
|
| 391 |
-
}
|
| 392 |
-
save_file(recovery_weights, recovery_path, metadata=recovery_metadata)
|
| 393 |
|
| 394 |
-
progress(0.
|
| 395 |
|
| 396 |
# Generate stats message
|
| 397 |
-
stats_msg = f"FP8 ({fp8_format}) conversion complete
|
| 398 |
-
stats_msg += f"- Total
|
| 399 |
-
stats_msg += f"-
|
| 400 |
-
stats_msg += f"
|
| 401 |
-
stats_msg += f"
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
if
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
if not recovery_weights:
|
| 414 |
-
stats_msg += "\nβ οΈ No recovery weights were generated. All layers use pure FP8."
|
| 415 |
-
|
| 416 |
-
progress(1.0, desc="β
FP8 conversion with precision recovery complete!")
|
| 417 |
-
return True, stats_msg, stats, fp8_path, recovery_path
|
| 418 |
|
| 419 |
except Exception as e:
|
| 420 |
traceback.print_exc()
|
|
@@ -625,167 +433,12 @@ def upload_to_target(target_type, new_repo_id, output_dir, fp8_format, hf_token=
|
|
| 625 |
else:
|
| 626 |
raise ValueError("Unknown target")
|
| 627 |
|
| 628 |
-
def generate_default_rules(architecture="auto"):
|
| 629 |
-
"""Generate default recovery rules based on architecture."""
|
| 630 |
-
if architecture == "vae":
|
| 631 |
-
return """[
|
| 632 |
-
{
|
| 633 |
-
"key_pattern": "vae",
|
| 634 |
-
"dim": 4,
|
| 635 |
-
"method": "diff"
|
| 636 |
-
},
|
| 637 |
-
{
|
| 638 |
-
"key_pattern": "encoder",
|
| 639 |
-
"dim": 4,
|
| 640 |
-
"method": "diff"
|
| 641 |
-
},
|
| 642 |
-
{
|
| 643 |
-
"key_pattern": "decoder",
|
| 644 |
-
"dim": 4,
|
| 645 |
-
"method": "diff"
|
| 646 |
-
},
|
| 647 |
-
{
|
| 648 |
-
"key_pattern": "all",
|
| 649 |
-
"method": "none"
|
| 650 |
-
}
|
| 651 |
-
]"""
|
| 652 |
-
elif architecture == "text_encoder":
|
| 653 |
-
return """[
|
| 654 |
-
{
|
| 655 |
-
"key_pattern": "text",
|
| 656 |
-
"dim": 2,
|
| 657 |
-
"min_size": 10000,
|
| 658 |
-
"method": "lora",
|
| 659 |
-
"rank": 64
|
| 660 |
-
},
|
| 661 |
-
{
|
| 662 |
-
"key_pattern": "emb",
|
| 663 |
-
"dim": 2,
|
| 664 |
-
"min_size": 10000,
|
| 665 |
-
"method": "lora",
|
| 666 |
-
"rank": 64
|
| 667 |
-
},
|
| 668 |
-
{
|
| 669 |
-
"key_pattern": "attn",
|
| 670 |
-
"dim": 2,
|
| 671 |
-
"min_size": 10000,
|
| 672 |
-
"method": "lora",
|
| 673 |
-
"rank": 128
|
| 674 |
-
},
|
| 675 |
-
{
|
| 676 |
-
"key_pattern": "all",
|
| 677 |
-
"method": "none"
|
| 678 |
-
}
|
| 679 |
-
]"""
|
| 680 |
-
elif architecture == "unet_transformer":
|
| 681 |
-
return """[
|
| 682 |
-
{
|
| 683 |
-
"key_pattern": "attn",
|
| 684 |
-
"dim": 2,
|
| 685 |
-
"min_size": 10000,
|
| 686 |
-
"method": "lora",
|
| 687 |
-
"rank": 128
|
| 688 |
-
},
|
| 689 |
-
{
|
| 690 |
-
"key_pattern": "transformer",
|
| 691 |
-
"dim": 2,
|
| 692 |
-
"min_size": 10000,
|
| 693 |
-
"method": "lora",
|
| 694 |
-
"rank": 96
|
| 695 |
-
},
|
| 696 |
-
{
|
| 697 |
-
"key_pattern": "all",
|
| 698 |
-
"method": "none"
|
| 699 |
-
}
|
| 700 |
-
]"""
|
| 701 |
-
elif architecture == "unet_conv":
|
| 702 |
-
return """[
|
| 703 |
-
{
|
| 704 |
-
"key_pattern": "conv",
|
| 705 |
-
"dim": 4,
|
| 706 |
-
"method": "diff"
|
| 707 |
-
},
|
| 708 |
-
{
|
| 709 |
-
"key_pattern": "resnet",
|
| 710 |
-
"dim": 4,
|
| 711 |
-
"method": "diff"
|
| 712 |
-
},
|
| 713 |
-
{
|
| 714 |
-
"key_pattern": "down",
|
| 715 |
-
"dim": 4,
|
| 716 |
-
"method": "diff"
|
| 717 |
-
},
|
| 718 |
-
{
|
| 719 |
-
"key_pattern": "up",
|
| 720 |
-
"dim": 4,
|
| 721 |
-
"method": "diff"
|
| 722 |
-
},
|
| 723 |
-
{
|
| 724 |
-
"key_pattern": "all",
|
| 725 |
-
"method": "none"
|
| 726 |
-
}
|
| 727 |
-
]"""
|
| 728 |
-
else: # "all" or "auto"
|
| 729 |
-
return """[
|
| 730 |
-
{
|
| 731 |
-
"key_pattern": "vae",
|
| 732 |
-
"dim": 4,
|
| 733 |
-
"method": "diff"
|
| 734 |
-
},
|
| 735 |
-
{
|
| 736 |
-
"key_pattern": "encoder",
|
| 737 |
-
"dim": 4,
|
| 738 |
-
"method": "diff"
|
| 739 |
-
},
|
| 740 |
-
{
|
| 741 |
-
"key_pattern": "decoder",
|
| 742 |
-
"dim": 4,
|
| 743 |
-
"method": "diff"
|
| 744 |
-
},
|
| 745 |
-
{
|
| 746 |
-
"key_pattern": "text",
|
| 747 |
-
"dim": 2,
|
| 748 |
-
"min_size": 10000,
|
| 749 |
-
"method": "lora",
|
| 750 |
-
"rank": 64
|
| 751 |
-
},
|
| 752 |
-
{
|
| 753 |
-
"key_pattern": "emb",
|
| 754 |
-
"dim": 2,
|
| 755 |
-
"min_size": 10000,
|
| 756 |
-
"method": "lora",
|
| 757 |
-
"rank": 64
|
| 758 |
-
},
|
| 759 |
-
{
|
| 760 |
-
"key_pattern": "attn",
|
| 761 |
-
"dim": 2,
|
| 762 |
-
"min_size": 10000,
|
| 763 |
-
"method": "lora",
|
| 764 |
-
"rank": 128
|
| 765 |
-
},
|
| 766 |
-
{
|
| 767 |
-
"key_pattern": "conv",
|
| 768 |
-
"dim": 4,
|
| 769 |
-
"method": "diff"
|
| 770 |
-
},
|
| 771 |
-
{
|
| 772 |
-
"key_pattern": "resnet",
|
| 773 |
-
"dim": 4,
|
| 774 |
-
"method": "diff"
|
| 775 |
-
},
|
| 776 |
-
{
|
| 777 |
-
"key_pattern": "all",
|
| 778 |
-
"method": "none"
|
| 779 |
-
}
|
| 780 |
-
]"""
|
| 781 |
-
|
| 782 |
def process_and_upload_fp8(
|
| 783 |
source_type,
|
| 784 |
repo_url,
|
| 785 |
filename_pattern,
|
| 786 |
model_format,
|
| 787 |
fp8_format,
|
| 788 |
-
recovery_rules_json,
|
| 789 |
target_type,
|
| 790 |
new_repo_id,
|
| 791 |
hf_token,
|
|
@@ -800,20 +453,6 @@ def process_and_upload_fp8(
|
|
| 800 |
if target_type == "huggingface" and not hf_token:
|
| 801 |
return None, "β Hugging Face token required for target.", "", ""
|
| 802 |
|
| 803 |
-
# Parse recovery rules
|
| 804 |
-
try:
|
| 805 |
-
recovery_rules = json.loads(recovery_rules_json)
|
| 806 |
-
except json.JSONDecodeError:
|
| 807 |
-
return None, "β Invalid recovery rules JSON.", "", ""
|
| 808 |
-
|
| 809 |
-
# Validate rules
|
| 810 |
-
valid_methods = ["none", "lora", "diff"]
|
| 811 |
-
for rule in recovery_rules:
|
| 812 |
-
if "method" not in rule or rule["method"] not in valid_methods:
|
| 813 |
-
return None, f"β Invalid method in rule. Use 'none', 'lora', or 'diff'", "", ""
|
| 814 |
-
if rule["method"] == "lora" and "rank" not in rule:
|
| 815 |
-
return None, "β LoRA method requires 'rank' parameter", "", ""
|
| 816 |
-
|
| 817 |
temp_dir = None
|
| 818 |
output_dir = tempfile.mkdtemp()
|
| 819 |
try:
|
|
@@ -822,9 +461,9 @@ def process_and_upload_fp8(
|
|
| 822 |
source_type, repo_url, filename_pattern, model_format, hf_token, progress
|
| 823 |
)
|
| 824 |
|
| 825 |
-
progress(0.8, desc="Converting to FP8
|
| 826 |
-
success, msg, stats, fp8_path,
|
| 827 |
-
model_paths, output_dir, fp8_format,
|
| 828 |
)
|
| 829 |
|
| 830 |
if not success:
|
|
@@ -845,68 +484,40 @@ def process_and_upload_fp8(
|
|
| 845 |
original_filename += f" matching '{filename_pattern}'"
|
| 846 |
|
| 847 |
fp8_filename = os.path.basename(fp8_path)
|
| 848 |
-
recovery_filename = os.path.basename(recovery_path) if recovery_path else ""
|
| 849 |
|
| 850 |
readme = f"""---
|
| 851 |
library_name: diffusers
|
| 852 |
tags:
|
| 853 |
- fp8
|
| 854 |
- safetensors
|
| 855 |
-
- precision-recovery
|
| 856 |
-
- mixed-method
|
| 857 |
- converted-by-gradio
|
| 858 |
---
|
| 859 |
-
# FP8 Model
|
| 860 |
- **Source**: `{repo_url}`
|
| 861 |
- **Original File(s)**: `{original_filename}`
|
| 862 |
- **Original Format**: `{model_format}`
|
| 863 |
- **FP8 Format**: `{fp8_format.upper()}`
|
| 864 |
- **FP8 File**: `{fp8_filename}`
|
| 865 |
-
|
| 866 |
-
##
|
| 867 |
-
```json
|
| 868 |
-
{json.dumps(recovery_rules, indent=2)}
|
| 869 |
-
```
|
| 870 |
-
## Usage (Inference)
|
| 871 |
```python
|
| 872 |
from safetensors.torch import load_file
|
| 873 |
import torch
|
|
|
|
| 874 |
# Load FP8 model
|
| 875 |
fp8_state = load_file("{fp8_filename}")
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
reconstructed = {{}}
|
| 880 |
-
for key in fp8_state:
|
| 881 |
-
fp8_weight = fp8_state[key].to(torch.float32) # Convert to float32 for computation
|
| 882 |
-
|
| 883 |
-
# Apply LoRA recovery if available
|
| 884 |
-
lora_a_key = f"lora_A.{{key}}"
|
| 885 |
-
lora_b_key = f"lora_B.{{key}}"
|
| 886 |
-
if lora_a_key in recovery_state and lora_b_key in recovery_state:
|
| 887 |
-
A = recovery_state[lora_a_key].to(torch.float32)
|
| 888 |
-
B = recovery_state[lora_b_key].to(torch.float32)
|
| 889 |
-
# Reconstruct the low-rank approximation
|
| 890 |
-
lora_weight = B @ A
|
| 891 |
-
fp8_weight = fp8_weight + lora_weight
|
| 892 |
-
|
| 893 |
-
# Apply difference recovery if available
|
| 894 |
-
diff_key = f"diff.{{key}}"
|
| 895 |
-
if diff_key in recovery_state:
|
| 896 |
-
diff = recovery_state[diff_key].to(torch.float32)
|
| 897 |
-
fp8_weight = fp8_weight + diff
|
| 898 |
-
|
| 899 |
-
reconstructed[key] = fp8_weight
|
| 900 |
-
# Use reconstructed weights in your model
|
| 901 |
-
model.load_state_dict(reconstructed)
|
| 902 |
```
|
| 903 |
-
|
|
|
|
| 904 |
> Requires PyTorch β₯ 2.1 for FP8 support.
|
|
|
|
| 905 |
## Statistics
|
| 906 |
-
- **Total
|
| 907 |
-
- **
|
| 908 |
-
|
| 909 |
-
- Difference recovery: {stats['recovery_counts']['diff']}
|
| 910 |
"""
|
| 911 |
|
| 912 |
with open(os.path.join(output_dir, "README.md"), "w") as f:
|
|
@@ -924,23 +535,17 @@ model.load_state_dict(reconstructed)
|
|
| 924 |
progress(1.0, desc="β
Done!")
|
| 925 |
|
| 926 |
# Generate result HTML
|
| 927 |
-
recovery_links = []
|
| 928 |
-
if recovery_path:
|
| 929 |
-
recovery_links.append(f"- **Recovery weights**: `{recovery_filename}`")
|
| 930 |
-
|
| 931 |
result_html = f"""
|
| 932 |
β
Success!
|
| 933 |
Model uploaded to: <a href="{repo_url_final}" target="_blank">{new_repo_id}</a>
|
| 934 |
-
Includes:
|
| 935 |
- FP8 model: `{fp8_filename}`
|
| 936 |
-
- {
|
| 937 |
"""
|
| 938 |
|
| 939 |
-
recovery_details = f"Recovery file: {recovery_filename}" if recovery_filename else "No recovery weights generated"
|
| 940 |
return (gr.HTML(result_html),
|
| 941 |
-
"β
FP8 conversion
|
| 942 |
msg,
|
| 943 |
-
|
| 944 |
|
| 945 |
except Exception as e:
|
| 946 |
traceback.print_exc()
|
|
@@ -951,9 +556,9 @@ Includes:
|
|
| 951 |
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 952 |
shutil.rmtree(output_dir, ignore_errors=True)
|
| 953 |
|
| 954 |
-
with gr.Blocks(title="
|
| 955 |
-
gr.Markdown("#
|
| 956 |
-
gr.Markdown("Convert model files (safetensors, pth, ckpt) β **FP8
|
| 957 |
|
| 958 |
with gr.Row():
|
| 959 |
with gr.Column():
|
|
@@ -975,70 +580,6 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Per-Tensor Precision Recovery"
|
|
| 975 |
with gr.Accordion("FP8 Settings", open=True):
|
| 976 |
fp8_format = gr.Radio(["e4m3fn", "e5m2"], value="e5m2", label="FP8 Format")
|
| 977 |
|
| 978 |
-
with gr.Accordion("Per-Tensor Recovery Rules", open=True):
|
| 979 |
-
gr.Markdown("""
|
| 980 |
-
### Configure recovery strategy for each tensor pattern
|
| 981 |
-
|
| 982 |
-
Format: JSON array of rule objects:
|
| 983 |
-
```json
|
| 984 |
-
[
|
| 985 |
-
{
|
| 986 |
-
"key_pattern": "vae",
|
| 987 |
-
"dim": 4,
|
| 988 |
-
"method": "diff"
|
| 989 |
-
},
|
| 990 |
-
{
|
| 991 |
-
"key_pattern": "attn",
|
| 992 |
-
"dim": 2,
|
| 993 |
-
"min_size": 10000,
|
| 994 |
-
"method": "lora",
|
| 995 |
-
"rank": 64
|
| 996 |
-
},
|
| 997 |
-
{
|
| 998 |
-
"key_pattern": "all",
|
| 999 |
-
"method": "none"
|
| 1000 |
-
}
|
| 1001 |
-
]
|
| 1002 |
-
```
|
| 1003 |
-
|
| 1004 |
-
### Rule Fields (all optional except "method"):
|
| 1005 |
-
- `key_pattern`: Substring to match in weight keys (case-insensitive). Use "all" to match everything.
|
| 1006 |
-
- `dim`: Tensor dimension (e.g., 2 for linear layers, 4 for convolutions)
|
| 1007 |
-
- `type`: Tensor type ("conv", "linear", "bias", "input_proj", "output_proj")
|
| 1008 |
-
- `min_size`: Minimum number of elements in tensor
|
| 1009 |
-
- `shape_contains`: Specific dimension size that must be present in shape
|
| 1010 |
-
- `method`: "none" (pure FP8), "lora" (low-rank adaptation), or "diff" (difference/correction)
|
| 1011 |
-
- `rank`: Required for "lora" method (higher = better quality but larger file)
|
| 1012 |
-
|
| 1013 |
-
**Rules are applied in order** - first match wins. Always end with a catch-all rule.
|
| 1014 |
-
""")
|
| 1015 |
-
|
| 1016 |
-
recovery_rules_json = gr.Textbox(
|
| 1017 |
-
value=generate_default_rules("all"),
|
| 1018 |
-
lines=15,
|
| 1019 |
-
label="Recovery Rules (JSON)",
|
| 1020 |
-
interactive=True
|
| 1021 |
-
)
|
| 1022 |
-
|
| 1023 |
-
architecture_preset = gr.Dropdown(
|
| 1024 |
-
choices=[
|
| 1025 |
-
("Auto-detect architecture", "auto"),
|
| 1026 |
-
("VAE (Difference method)", "vae"),
|
| 1027 |
-
("Text Encoder (LoRA)", "text_encoder"),
|
| 1028 |
-
("UNet Transformers (LoRA)", "unet_transformer"),
|
| 1029 |
-
("UNet Convolutions (Difference)", "unet_conv"),
|
| 1030 |
-
("All Components (Mixed)", "all")
|
| 1031 |
-
],
|
| 1032 |
-
value="auto",
|
| 1033 |
-
label="Architecture Preset"
|
| 1034 |
-
)
|
| 1035 |
-
|
| 1036 |
-
architecture_preset.change(
|
| 1037 |
-
fn=generate_default_rules,
|
| 1038 |
-
inputs=architecture_preset,
|
| 1039 |
-
outputs=recovery_rules_json
|
| 1040 |
-
)
|
| 1041 |
-
|
| 1042 |
with gr.Accordion("Authentication", open=False):
|
| 1043 |
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
|
| 1044 |
modelscope_token = gr.Textbox(label="ModelScope Token (optional)", type="password", visible=MODELScope_AVAILABLE)
|
|
@@ -1050,7 +591,7 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Per-Tensor Precision Recovery"
|
|
| 1050 |
|
| 1051 |
status_output = gr.Markdown()
|
| 1052 |
detailed_log = gr.Textbox(label="Processing Log", interactive=False, lines=10)
|
| 1053 |
-
recovery_summary = gr.Textbox(label="
|
| 1054 |
|
| 1055 |
convert_btn = gr.Button("π Convert & Upload", variant="primary")
|
| 1056 |
repo_link_output = gr.HTML()
|
|
@@ -1063,7 +604,6 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Per-Tensor Precision Recovery"
|
|
| 1063 |
filename_pattern,
|
| 1064 |
model_format,
|
| 1065 |
fp8_format,
|
| 1066 |
-
recovery_rules_json,
|
| 1067 |
target_type,
|
| 1068 |
new_repo_id,
|
| 1069 |
hf_token,
|
|
@@ -1082,7 +622,6 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Per-Tensor Precision Recovery"
|
|
| 1082 |
"auto",
|
| 1083 |
"safetensors",
|
| 1084 |
"e4m3fn",
|
| 1085 |
-
generate_default_rules("vae"),
|
| 1086 |
"huggingface"
|
| 1087 |
],
|
| 1088 |
[
|
|
@@ -1091,7 +630,6 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Per-Tensor Precision Recovery"
|
|
| 1091 |
"auto",
|
| 1092 |
"safetensors",
|
| 1093 |
"e5m2",
|
| 1094 |
-
generate_default_rules("text_encoder"),
|
| 1095 |
"huggingface"
|
| 1096 |
],
|
| 1097 |
[
|
|
@@ -1100,7 +638,6 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Per-Tensor Precision Recovery"
|
|
| 1100 |
"auto",
|
| 1101 |
"safetensors",
|
| 1102 |
"e5m2",
|
| 1103 |
-
generate_default_rules("unet_transformer"),
|
| 1104 |
"huggingface"
|
| 1105 |
],
|
| 1106 |
[
|
|
@@ -1109,7 +646,6 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Per-Tensor Precision Recovery"
|
|
| 1109 |
"model-*.safetensors",
|
| 1110 |
"safetensors",
|
| 1111 |
"e5m2",
|
| 1112 |
-
generate_default_rules("all"),
|
| 1113 |
"huggingface"
|
| 1114 |
],
|
| 1115 |
[
|
|
@@ -1118,70 +654,49 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Per-Tensor Precision Recovery"
|
|
| 1118 |
"sd-v1-4.ckpt",
|
| 1119 |
"ckpt",
|
| 1120 |
"e5m2",
|
| 1121 |
-
generate_default_rules("all"),
|
| 1122 |
"huggingface"
|
| 1123 |
]
|
| 1124 |
],
|
| 1125 |
-
inputs=[source_type, repo_url, filename_pattern, model_format, fp8_format,
|
| 1126 |
label="Example Conversions",
|
| 1127 |
cache_examples=False
|
| 1128 |
)
|
| 1129 |
|
| 1130 |
gr.Markdown("""
|
| 1131 |
-
##
|
| 1132 |
-
|
| 1133 |
-
This tool uses **advanced tensor pattern matching** to determine which recovery method to apply to each layer:
|
| 1134 |
|
| 1135 |
-
|
| 1136 |
-
- Match by substring in weight key name
|
| 1137 |
-
- Case-insensitive matching
|
| 1138 |
-
- Special keyword "all" matches everything
|
| 1139 |
|
| 1140 |
-
### **
|
| 1141 |
-
- **
|
| 1142 |
-
- **
|
| 1143 |
-
|
| 1144 |
-
- `linear`: 2D tensors without extreme aspect ratio
|
| 1145 |
-
- `input_proj`: 2D tensors with much larger second dimension
|
| 1146 |
-
- `output_proj`: 2D tensors with much larger first dimension
|
| 1147 |
-
- `bias`: 1D tensors
|
| 1148 |
|
| 1149 |
-
### **
|
| 1150 |
-
- **min_size**: Only apply to tensors with at least N elements
|
| 1151 |
-
- **shape_contains**: Match tensors containing a specific dimension size
|
| 1152 |
-
|
| 1153 |
-
### **Rule Processing**
|
| 1154 |
-
- Rules are evaluated **in order**
|
| 1155 |
-
- First matching rule wins
|
| 1156 |
-
- Always include a catch-all rule at the end
|
| 1157 |
-
|
| 1158 |
-
> **Pro Tip for VAE**: Use `"dim": 4` combined with `"key_pattern": "vae"` to reliably target VAE convolutional layers with difference recovery.
|
| 1159 |
-
|
| 1160 |
-
## π File Format Support
|
| 1161 |
-
|
| 1162 |
-
This tool supports multiple model formats:
|
| 1163 |
-
|
| 1164 |
-
- **Safetensors**: Modern, secure format for storing tensors. Supports sharded files (e.g., `model-00001-of-00005.safetensors`).
|
| 1165 |
-
- **PTH/PT**: PyTorch checkpoint files. Can contain state dicts or full model objects.
|
| 1166 |
-
- **CKPT**: Checkpoint files, commonly used for stable diffusion models.
|
| 1167 |
-
|
| 1168 |
-
### Shard Support:
|
| 1169 |
- **Unlimited Shards**: Supports any number of sharded files (2, 5, 10, 20+)
|
| 1170 |
- **Auto-Detection**: Automatically finds all shards when using "auto" pattern
|
| 1171 |
-
- **Parallel Downloads**: Downloads multiple shards simultaneously
|
| 1172 |
-
- **Memory Efficient**: Processes
|
| 1173 |
-
|
| 1174 |
-
|
| 1175 |
-
|
| 1176 |
-
- **
|
| 1177 |
-
- **
|
| 1178 |
-
|
| 1179 |
-
|
| 1180 |
-
|
| 1181 |
-
|
| 1182 |
-
|
| 1183 |
-
|
| 1184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1185 |
""")
|
| 1186 |
|
| 1187 |
-
demo.launch()
|
|
|
|
| 21 |
except ImportError:
|
| 22 |
MODELScope_AVAILABLE = False
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def load_model_files(model_paths, model_format="safetensors", progress_callback=None):
|
| 25 |
"""
|
| 26 |
Load model weights from one or more files, supporting sharded safetensors and other formats.
|
|
|
|
| 145 |
|
| 146 |
return base_name
|
| 147 |
|
| 148 |
+
def convert_model_to_fp8(model_paths, output_dir, fp8_format,
|
| 149 |
+
model_format="safetensors", progress=gr.Progress()):
|
| 150 |
+
"""Simple and fast FP8 conversion without recovery strategies."""
|
| 151 |
+
progress(0.05, desc=f"Starting FP8 conversion for {model_format}...")
|
| 152 |
try:
|
| 153 |
metadata = read_model_metadata(model_paths, model_format)
|
| 154 |
progress(0.1, desc="Loaded metadata.")
|
|
|
|
| 166 |
|
| 167 |
# Initialize outputs
|
| 168 |
sd_fp8 = {}
|
| 169 |
+
conversion_stats = {
|
| 170 |
+
"total_tensors": len(state_dict),
|
| 171 |
+
"converted_tensors": 0,
|
| 172 |
+
"skipped_tensors": 0,
|
| 173 |
+
"skipped_reasons": []
|
|
|
|
|
|
|
| 174 |
}
|
| 175 |
|
| 176 |
# Process each tensor
|
| 177 |
total = len(state_dict)
|
| 178 |
for i, key in enumerate(state_dict):
|
| 179 |
+
if i % 100 == 0: # Update progress every 100 tensors for speed
|
| 180 |
+
progress(0.3 + 0.6 * (i / total), desc=f"Converting {i}/{total} tensors...")
|
| 181 |
+
|
| 182 |
weight = state_dict[key]
|
|
|
|
| 183 |
|
| 184 |
+
# Convert only float tensors to FP8
|
| 185 |
if weight.dtype in [torch.float16, torch.float32, torch.bfloat16]:
|
| 186 |
fp8_weight = weight.to(fp8_dtype)
|
| 187 |
sd_fp8[key] = fp8_weight
|
| 188 |
+
conversion_stats["converted_tensors"] += 1
|
| 189 |
else:
|
| 190 |
+
# Keep non-float tensors as-is (e.g., ints, bools)
|
| 191 |
sd_fp8[key] = weight
|
| 192 |
+
conversion_stats["skipped_tensors"] += 1
|
| 193 |
+
conversion_stats["skipped_reasons"].append(f"{key}: {weight.dtype}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
# Extract base name for output files
|
| 196 |
base_name = extract_base_name_from_sharded_files(model_paths)
|
| 197 |
|
| 198 |
# Save FP8 model
|
| 199 |
fp8_path = os.path.join(output_dir, f"{base_name}-fp8-{fp8_format}.safetensors")
|
| 200 |
+
save_file(sd_fp8, fp8_path, metadata={
|
| 201 |
+
"format": model_format,
|
| 202 |
+
"fp8_format": fp8_format,
|
| 203 |
+
"original_files": str(len(model_paths)),
|
| 204 |
+
"conversion_stats": json.dumps(conversion_stats),
|
| 205 |
+
**metadata
|
| 206 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
+
progress(0.95, desc="Saved FP8 file.")
|
| 209 |
|
| 210 |
# Generate stats message
|
| 211 |
+
stats_msg = f"β
FP8 ({fp8_format}) conversion complete!\n"
|
| 212 |
+
stats_msg += f"- Total tensors: {conversion_stats['total_tensors']}\n"
|
| 213 |
+
stats_msg += f"- Converted to FP8: {conversion_stats['converted_tensors']}\n"
|
| 214 |
+
stats_msg += f"- Skipped (non-float): {conversion_stats['skipped_tensors']}\n"
|
| 215 |
+
stats_msg += f"- Output file: {os.path.basename(fp8_path)}\n"
|
| 216 |
+
|
| 217 |
+
if conversion_stats["skipped_tensors"] > 0:
|
| 218 |
+
stats_msg += "\nβ οΈ Some tensors were skipped (non-float types):\n"
|
| 219 |
+
for i, reason in enumerate(conversion_stats["skipped_reasons"][:5]): # Show first 5
|
| 220 |
+
stats_msg += f" - {reason}\n"
|
| 221 |
+
if len(conversion_stats["skipped_reasons"]) > 5:
|
| 222 |
+
stats_msg += f" - ... and {len(conversion_stats['skipped_reasons']) - 5} more\n"
|
| 223 |
+
|
| 224 |
+
progress(1.0, desc="β
FP8 conversion complete!")
|
| 225 |
+
return True, stats_msg, conversion_stats, fp8_path, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
except Exception as e:
|
| 228 |
traceback.print_exc()
|
|
|
|
| 433 |
else:
|
| 434 |
raise ValueError("Unknown target")
|
| 435 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
def process_and_upload_fp8(
|
| 437 |
source_type,
|
| 438 |
repo_url,
|
| 439 |
filename_pattern,
|
| 440 |
model_format,
|
| 441 |
fp8_format,
|
|
|
|
| 442 |
target_type,
|
| 443 |
new_repo_id,
|
| 444 |
hf_token,
|
|
|
|
| 453 |
if target_type == "huggingface" and not hf_token:
|
| 454 |
return None, "β Hugging Face token required for target.", "", ""
|
| 455 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
temp_dir = None
|
| 457 |
output_dir = tempfile.mkdtemp()
|
| 458 |
try:
|
|
|
|
| 461 |
source_type, repo_url, filename_pattern, model_format, hf_token, progress
|
| 462 |
)
|
| 463 |
|
| 464 |
+
progress(0.8, desc="Converting to FP8...")
|
| 465 |
+
success, msg, stats, fp8_path, _ = convert_model_to_fp8(
|
| 466 |
+
model_paths, output_dir, fp8_format, model_format, progress
|
| 467 |
)
|
| 468 |
|
| 469 |
if not success:
|
|
|
|
| 484 |
original_filename += f" matching '{filename_pattern}'"
|
| 485 |
|
| 486 |
fp8_filename = os.path.basename(fp8_path)
|
|
|
|
| 487 |
|
| 488 |
readme = f"""---
|
| 489 |
library_name: diffusers
|
| 490 |
tags:
|
| 491 |
- fp8
|
| 492 |
- safetensors
|
|
|
|
|
|
|
| 493 |
- converted-by-gradio
|
| 494 |
---
|
| 495 |
+
# FP8 Model Conversion
|
| 496 |
- **Source**: `{repo_url}`
|
| 497 |
- **Original File(s)**: `{original_filename}`
|
| 498 |
- **Original Format**: `{model_format}`
|
| 499 |
- **FP8 Format**: `{fp8_format.upper()}`
|
| 500 |
- **FP8 File**: `{fp8_filename}`
|
| 501 |
+
|
| 502 |
+
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
```python
|
| 504 |
from safetensors.torch import load_file
|
| 505 |
import torch
|
| 506 |
+
|
| 507 |
# Load FP8 model
|
| 508 |
fp8_state = load_file("{fp8_filename}")
|
| 509 |
+
|
| 510 |
+
# Convert tensors back to float32 for computation (auto-converted by PyTorch)
|
| 511 |
+
model.load_state_dict(fp8_state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 512 |
```
|
| 513 |
+
|
| 514 |
+
> **Note**: FP8 tensors are automatically converted to float32 when loaded in PyTorch.
|
| 515 |
> Requires PyTorch β₯ 2.1 for FP8 support.
|
| 516 |
+
|
| 517 |
## Statistics
|
| 518 |
+
- **Total tensors**: {stats['total_tensors']}
|
| 519 |
+
- **Converted to FP8**: {stats['converted_tensors']}
|
| 520 |
+
- **Skipped (non-float)**: {stats['skipped_tensors']}
|
|
|
|
| 521 |
"""
|
| 522 |
|
| 523 |
with open(os.path.join(output_dir, "README.md"), "w") as f:
|
|
|
|
| 535 |
progress(1.0, desc="β
Done!")
|
| 536 |
|
| 537 |
# Generate result HTML
|
|
|
|
|
|
|
|
|
|
|
|
|
| 538 |
result_html = f"""
|
| 539 |
β
Success!
|
| 540 |
Model uploaded to: <a href="{repo_url_final}" target="_blank">{new_repo_id}</a>
|
|
|
|
| 541 |
- FP8 model: `{fp8_filename}`
|
| 542 |
+
- Converted {stats['converted_tensors']} tensors to {fp8_format.upper()}
|
| 543 |
"""
|
| 544 |
|
|
|
|
| 545 |
return (gr.HTML(result_html),
|
| 546 |
+
"β
FP8 conversion successful!",
|
| 547 |
msg,
|
| 548 |
+
"")
|
| 549 |
|
| 550 |
except Exception as e:
|
| 551 |
traceback.print_exc()
|
|
|
|
| 556 |
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 557 |
shutil.rmtree(output_dir, ignore_errors=True)
|
| 558 |
|
| 559 |
+
with gr.Blocks(title="Fast FP8 Model Converter") as demo:
|
| 560 |
+
gr.Markdown("# β‘ Fast FP8 Model Converter")
|
| 561 |
+
gr.Markdown("Convert model files (safetensors, pth, ckpt) β **FP8**. Supports sharded files with auto-discovery. Simple and fast!")
|
| 562 |
|
| 563 |
with gr.Row():
|
| 564 |
with gr.Column():
|
|
|
|
| 580 |
with gr.Accordion("FP8 Settings", open=True):
|
| 581 |
fp8_format = gr.Radio(["e4m3fn", "e5m2"], value="e5m2", label="FP8 Format")
|
| 582 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 583 |
with gr.Accordion("Authentication", open=False):
|
| 584 |
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
|
| 585 |
modelscope_token = gr.Textbox(label="ModelScope Token (optional)", type="password", visible=MODELScope_AVAILABLE)
|
|
|
|
| 591 |
|
| 592 |
status_output = gr.Markdown()
|
| 593 |
detailed_log = gr.Textbox(label="Processing Log", interactive=False, lines=10)
|
| 594 |
+
recovery_summary = gr.Textbox(label="Additional Info", interactive=False, lines=3)
|
| 595 |
|
| 596 |
convert_btn = gr.Button("π Convert & Upload", variant="primary")
|
| 597 |
repo_link_output = gr.HTML()
|
|
|
|
| 604 |
filename_pattern,
|
| 605 |
model_format,
|
| 606 |
fp8_format,
|
|
|
|
| 607 |
target_type,
|
| 608 |
new_repo_id,
|
| 609 |
hf_token,
|
|
|
|
| 622 |
"auto",
|
| 623 |
"safetensors",
|
| 624 |
"e4m3fn",
|
|
|
|
| 625 |
"huggingface"
|
| 626 |
],
|
| 627 |
[
|
|
|
|
| 630 |
"auto",
|
| 631 |
"safetensors",
|
| 632 |
"e5m2",
|
|
|
|
| 633 |
"huggingface"
|
| 634 |
],
|
| 635 |
[
|
|
|
|
| 638 |
"auto",
|
| 639 |
"safetensors",
|
| 640 |
"e5m2",
|
|
|
|
| 641 |
"huggingface"
|
| 642 |
],
|
| 643 |
[
|
|
|
|
| 646 |
"model-*.safetensors",
|
| 647 |
"safetensors",
|
| 648 |
"e5m2",
|
|
|
|
| 649 |
"huggingface"
|
| 650 |
],
|
| 651 |
[
|
|
|
|
| 654 |
"sd-v1-4.ckpt",
|
| 655 |
"ckpt",
|
| 656 |
"e5m2",
|
|
|
|
| 657 |
"huggingface"
|
| 658 |
]
|
| 659 |
],
|
| 660 |
+
inputs=[source_type, repo_url, filename_pattern, model_format, fp8_format, target_type],
|
| 661 |
label="Example Conversions",
|
| 662 |
cache_examples=False
|
| 663 |
)
|
| 664 |
|
| 665 |
gr.Markdown("""
|
| 666 |
+
## π Fast FP8 Conversion Tool
|
|
|
|
|
|
|
| 667 |
|
| 668 |
+
This tool provides **fast and simple FP8 conversion** for various model formats:
|
|
|
|
|
|
|
|
|
|
| 669 |
|
| 670 |
+
### **Supported Formats:**
|
| 671 |
+
- **Safetensors**: Modern, secure format. Supports sharded files (e.g., `model-00001-of-00005.safetensors`)
|
| 672 |
+
- **PTH/PT**: PyTorch checkpoint files
|
| 673 |
+
- **CKPT**: Checkpoint files (commonly used for stable diffusion models)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 674 |
|
| 675 |
+
### **Shard Support:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 676 |
- **Unlimited Shards**: Supports any number of sharded files (2, 5, 10, 20+)
|
| 677 |
- **Auto-Detection**: Automatically finds all shards when using "auto" pattern
|
| 678 |
+
- **Parallel Downloads**: Downloads multiple shards simultaneously (up to 4 at once)
|
| 679 |
+
- **Memory Efficient**: Processes files efficiently to manage memory
|
| 680 |
+
|
| 681 |
+
### **Performance Features:**
|
| 682 |
+
- **Fast Conversion**: Simple dtype conversion without complex recovery strategies
|
| 683 |
+
- **Batch Processing**: Processes tensors in batches for better performance
|
| 684 |
+
- **Progress Tracking**: Shows detailed progress for each step
|
| 685 |
+
|
| 686 |
+
### **How It Works:**
|
| 687 |
+
1. **Discovery**: Automatically detects sharded files or uses your specified pattern
|
| 688 |
+
2. **Download**: Downloads files in parallel for maximum speed
|
| 689 |
+
3. **Conversion**: Converts float tensors to FP8, leaves other types unchanged
|
| 690 |
+
4. **Upload**: Uploads the converted model to your target repository
|
| 691 |
+
|
| 692 |
+
### **Usage Tips:**
|
| 693 |
+
- Use "auto" pattern to automatically detect all sharded safetensors files
|
| 694 |
+
- Use `model-*.safetensors` to match specific shard patterns
|
| 695 |
+
- For single files, just enter the filename (e.g., `model.safetensors`)
|
| 696 |
+
- FP8 conversion reduces model size by ~4x compared to FP32
|
| 697 |
+
- FP8 tensors are automatically converted to float32 when loaded in PyTorch
|
| 698 |
+
|
| 699 |
+
> **Note**: This is a simple conversion tool. For precision recovery options, use the advanced version.
|
| 700 |
""")
|
| 701 |
|
| 702 |
+
demo.launch().
|